Subgroups of \mathbb{R} -factorizable groups

Constancio Hernández¹, Michael Tkačenko¹

Abstract. The properties of \mathbb{R} -factorizable groups and their subgroups are studied. We show that a locally compact group G is \mathbb{R} -factorizable if and only if G is σ -compact. It is proved that a subgroup H of an \mathbb{R} -factorizable group G is \mathbb{R} -factorizable if and only if H is z-embedded in G. Therefore, a subgroup of an \mathbb{R} -factorizable group need not be \mathbb{R} -factorizable, and we present a method for constructing non- \mathbb{R} -factorizable dense subgroups of a special class of \mathbb{R} -factorizable groups. Finally, we construct a closed G_{δ} -subgroup of an \mathbb{R} -factorizable group which is not \mathbb{R} -factorizable.

Keywords: \mathbb{R} -factorizable group, z-embedded set, \aleph_0 -bounded group, P-group, Lindelöf group

Classification: Primary 54H11, 22A05; Secondary 22D05, 54C50

1. Introduction

A topological group G is called \mathbb{R} -factorizable ([7], [8]) if for every continuous function $g: G \to \mathbb{R}$ there exist a continuous homomorphism $\pi: G \to H$ of G onto a second-countable topological group H and a continuous function $h: H \to \mathbb{R}$ such that $g = h \circ \pi$. The reals \mathbb{R} in this definition can be substituted by any second countable regular space X, thus giving us a possibility to factorize continuous functions $f: G \to X$ via continuous homomorphism onto second countable topological groups ([8]). The class of \mathbb{R} -factorizable groups is sufficiently wide; it contains all totally bounded groups, σ -compact groups (or, more generally, Lindelöf groups) and arbitrary subgroups of Lindelöf Σ -groups ([7], [8]). It is known, however, that subgroups of \mathbb{R} -factorizable groups do not inherit this property ([7, Example 2]).

In fact, some results on topological groups proved before 1990 can now be reformulated in terms of \mathbb{R} -factorizability. For example, the theorem proved on pages 118–119 of [6] is equivalent to say that every compact topological group is \mathbb{R} -factorizable. Theorem 1.2 of [2] implies, in particular, that every pseudocompact topological group is \mathbb{R} -factorizable. Note that every pseudocompact group is totally bounded ([2, Theorem 11]).

Our aim is to study \mathbb{R} -factorizable groups and their subgroups. We show first that a locally compact group is \mathbb{R} -factorizable if and only if it is σ -compact (Theorem 2.3). Then we characterize the subgroups of \mathbb{R} -factorizable groups which

¹The research is partially supported by Consejo Nacional de Ciencias y Tecnología (CONA-CYT), grant no. 400200-5-3012PE.

inherit this property: a subgroup H of an \mathbb{R} -factorizable group G is \mathbb{R} -factorizable if and only if H is z-embedded in G (Theorem 2.4). A slight modification of a construction in [7] gives us a lot of dense subgroups of \mathbb{R} -factorizable groups which are not \mathbb{R} -factorizable (see Theorem 3.1). We also construct a closed G_{δ} -subgroup of an Abelian \mathbb{R} -factorizable group which is not \mathbb{R} -factorizable (Example 3.2).

Finally, we consider a formally weaker notion of a semi- \mathbb{R} -factorizable group and show that every semi- \mathbb{R} -factorizable group is \mathbb{R} -factorizable.

2. z-embedded subgroups of topological groups

The notion of an \aleph_0 -bounded topological group introduced by Guran ([3]) plays an important rôle in our considerations.

Definition 2.1. A topological group G is said to be \aleph_0 -bounded if for each neighborhood U of the identity, there exists a countable subset $M \subseteq G$ such that $G = M \cdot U$.

It is known ([3]) that a topological group G is \aleph_0 -bounded if and only if it embeds into a cartesian product of second countable topological groups as a topological subgroup. Although the following result was mentioned in [8], its proof was only sketched there.

Lemma 2.2. Every \mathbb{R} -factorizable group is \aleph_0 -bounded.

PROOF: Let G be an \mathbb{R} -factorizable group. It suffices to show that G can be embedded as a topological subgroup into a product of second countable groups. Let $\mathcal{N}(e)$ be a neighborhood base at the identity e of G. For every neighborhood $U \in \mathcal{N}(e)$, let $f_U: G \to \mathbb{R}$ be a continuous function such that f(e) = 1and $f(G \setminus U) = \{0\}$. Since G is \mathbb{R} -factorizable, there exist a second countable group H_U , a continuous homomorphism $\pi_U: G \to H_U$ and a continuous function $h: H_U \to \mathbb{R}$ such that $f = h \circ \pi_U$. Observe that the diagonal product $\varphi = \Delta\{\pi_U: U \in \mathcal{N}(e)\}$ is a topological monomorphism of G to the group $\Pi = \prod\{H_U: U \in \mathcal{N}(e)\}$.

Since second countable groups H_U are \aleph_0 -bounded, the group Π is \aleph_0 -bounded as well. Now, subgroups of \aleph_0 -bounded groups are \aleph_0 -bounded, so G inherits this property.

Theorem 2.3. A locally compact \mathbb{R} -factorizable group is σ -compact.

PROOF: Suppose that G is a locally compact \mathbb{R} -factorizable group. Then there exists a neighborhood U of the identity of G such that \overline{U} is compact. Since every \mathbb{R} -factorizable group is \aleph_0 -bounded (Lemma 2.2), there is a countable subset $C \subseteq G$ such that $C \cdot U = G$. Therefore, $\{g \cdot \overline{U} : g \in C\}$ is a countable family of compact sets whose union is G.

Tkačenko [7] showed that subgroups of \mathbb{R} -factorizable groups are not necessarily \mathbb{R} -factorizable. On the other hand, an \mathbb{R} -factorizable subgroup of an arbitrary topological group G is z-embedded in G ([4]). In the following theorem we give

a complete characterization of subgroups of \mathbb{R} -factorizable groups which preserve the property of \mathbb{R} -factorizability. Let X be a topological space and let be $A \subseteq X$. We say that A is z-embedded in X if every cozero set B in A is of the form $B = A \cap C$, where C is a cozero set in X.

Theorem 2.4. A subgroup H of an \mathbb{R} -factorizable group G is \mathbb{R} -factorizable if and only if H is z-embedded in G.

PROOF: We shall only give the proof of the fact that z-embedding is a sufficient condition for the subgroup H to be \mathbb{R} -factorizable because the proof of necessity appears as Theorem 3.1 of [4]. Let $f: H \to \mathbb{R}$ be a continuous function. Consider the family γ of all open intervals in \mathbb{R} with rational end points. For every $U \in$ γ , let V_U be a cozero set in G such that $V_U \cap H = f^{-1}(U)$. There exists a continuous function $g_U: G \to \mathbb{R}$ such that $g_U^{-1}(U) = V_U$. The diagonal product $g = \Delta_{U \in \gamma} g_U$ is a continuous mapping of G to the second countable space \mathbb{R}^{γ} and, by \mathbb{R} -factorizability of G, there exist a continuous homomorphism π of G onto a second countable topological group G^* and a continuous function $g^*: G^* \to \mathbb{R}^{\gamma}$ such that $g = g^* \circ \pi$.

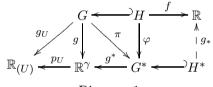


Diagram 1

We claim that for any $x_0, x_1 \in H$, $f(x_0) = f(x_1)$ whenever $\pi(x_0) = \pi(x_1)$. Assume the contrary, let $f(x_0) \neq f(x_1)$ for some $x_0, x_1 \in H$ with $\pi(x_0) = \pi(x_1)$. We can also assume that $f(x_0) < f(x_1)$. If r_0, r_1 and r_2 are rationals and $r_0 < f(x_0) < r_1 < f(x_1) < r_2$, consider the intervals $U_0 = (r_0, r_1) \in \gamma$ and $U_1 = (r_1, r_2) \in \gamma$. Let $p_{U_i}: \mathbb{R}^{\gamma} \to \mathbb{R} = \mathbb{R}_{U_i}$ be the natural projections, $g \circ p_{U_i} = g_{U_i} \ (i = 0, 1)$. On the one hand, the sets $g_{U_0}^{-1}(U_0) \cap H = f^{-1}(U_0)$ and $g_{U_1}^{-1}(U_1) \cap H = f^{-1}(U_1)$ are disjoint. This is equivalent to say that $g^{-1}(O_0) \cap H$ and $g^{-1}(O_1) \cap H$ are disjoint, where $O_i = p_{U_i}^{-1}(U_i) \ni g(x_i) \ (i = 0, 1)$. In particular, $g(x_0) \neq g(x_1)$. On the other hand, $g = g^* \circ \pi$, whence $g(x_0) = g(x_1)$, a contradiction.

Put $H^* = \pi(H)$. The assertion just proved implies that there exists a function $g_*: H^* \to \mathbb{R}$ such that $f = g_* \circ \pi \upharpoonright_H$. It remains to verify that g_* is continuous. Let $U \in \gamma$ be arbitrary. Then

$$g_*^{-1}(U) = \pi \left(f^{-1}(U) \right) = \pi \left(g_U^{-1}(U) \cap H \right) = (g^*)^{-1} \left(p_U^{-1}(U) \right) \cap \pi(H)$$

is open in $\pi(H) = H^*$. Since γ is a base for \mathbb{R} , this proves the continuity of g_* . Thus, we have $f = g_* \circ \varphi$, where $\varphi = \pi \upharpoonright_H$ is a continuous homomorphism of H onto the second countable group $H^* \subseteq G^*$, and hence H is \mathbb{R} -factorizable. \Box It is clear that every retract of a space X is z-embedded in X. Indeed, if $r: X \to X$ is a retraction and Y = r(X), then for each continuous function $f: Y \to \mathbb{R}$, the function $\hat{f} = f \circ r$ is a continuous extension of f to X. Note also that if G is a topological group and H is an open subgroup of G, then H is a retract of G. Indeed, in every left coset U of H in G, pick a point $x_U \in U$. Define $r: G \to H$ in the following way: if $g \in H$, then f(g) = g; if $g \in U$ and $U \neq H$, put $r(g) = x_U^{-1}g$. Since the left cosets are open and disjoint, the continuity of r is immediate. From these two observations we deduce the following results.

Corollary 2.5. Let G be an \mathbb{R} -factorizable group and H a subgroup of G. If H is a retract of G, then H is \mathbb{R} -factorizable.

Corollary 2.6. An open subgroup of an \mathbb{R} -factorizable group is \mathbb{R} -factorizable.

3. Some examples

By Corollary 1.13 of [8], every Lindelöf topological group is \mathbb{R} -factorizable. Let us call a topological group G a P-group if any intersection of countably many open sets in G is open. Making use of the existence of a special Lindelöf P-group \widehat{G} of weight \aleph_1 (see [1]), Tkačenko [7] constructed an example of a proper dense subgroup of \widehat{G} which was not \mathbb{R} -factorizable. Our aim is to show that any proper dense subgroup of an arbitrary Lindelöf P-group of weight \aleph_1 is not \mathbb{R} -factorizable.

Theorem 3.1. If *H* is a proper dense subgroup of a Lindelöf *P*-group *G* of weight \aleph_1 , then *H* is not \mathbb{R} -factorizable.

PROOF: Since G is a P-group, it is zero-dimensional. Therefore, we choose a base $\mathcal{B} = \{O_{\alpha} : \alpha < \omega_1\}$ at the identity e of G satisfying the following conditions for each $\alpha < \omega_1$:

- (1) O_{α} is a clopen set;
- (2) $O_{\alpha} = \bigcap_{\beta < \alpha} O_{\beta}$ for any limit ordinal $\alpha < \omega_1$;
- (4) $O_{\alpha+1}^2 \subset O_{\alpha};$
- (3) $O_{\alpha} \setminus O_{\alpha+1} = A_{\alpha} \cup B_{\alpha}$ where A_{α} and B_{α} are nonempty disjoint clopen sets.

Now define U' and V' by $U' = (G \setminus O_0) \cup (\bigcup_{\alpha < \omega_1} A_\alpha)$ and $V' = \bigcup_{\alpha < \omega_1} B_\alpha$. From conditions (1) and (4) it follows that U' and V' are open sets. Conditions (2) and (4) imply that $U' \cup V' = G \setminus \{e\}$. Finally, (3) guarantees that U' and V' are nonempty.

Pick a point $g \in G \setminus H$ and define $U = gU' \cap H$ and $V = gV' \cap H$. Then Uand V are non-empty open subsets of H and $H = U \cup V$. Let f be the function on H defined by the rule f(x) = 0 if $x \in U \cap H$ and f(x) = 1 if $x \in V \cap H$. It is easy to see that f is continuous. Let $\pi: H \to K$ be a continuous homomorphism of H to a metrizable group K. Then the kernel of π is a G_{δ} -set in H, and hence is an open neighborhood of e. So, we can find $\alpha < \omega_1$ such that $O_{\alpha} \cap H \subseteq \ker \pi$. Pick points $a \in H \cap gA_{\alpha+1}$ and $b \in H \cap gB_{\alpha+1}$. Then $ab^{-1} \in O_{\alpha}$ by (3) and (4), which in turn implies that $\pi(a) = \pi(b)$, whereas f(a) = 0 and f(b) = 1. This means that the group H is not \mathbb{R} -factorizable.

The above theorem shows that there are many subgroups of \mathbb{R} -factorizable groups which are not \mathbb{R} -factorizable. In special classes of \mathbb{R} -factorizable groups the situation changes: by Corollary 1.13 of [8], every subgroup of a σ -compact topological group is \mathbb{R} -factorizable. Intuitively, G_{δ} -subgroups of a topological group seem close to be z-embedded in it. Thus, Theorem 2.4 might suggest the conjecture that a closed G_{δ} -subgroup of an \mathbb{R} -factorizable group is \mathbb{R} -factorizable as well. We show below that this is not the case.

Example 3.2. Let H be an \aleph_0 -bounded Abelian group of weight \aleph_1 which is not \mathbb{R} -factorizable ([7, Example 2.1]). By a theorem of Guran [3], H can be considered as a subgroup of a product $\Pi = \prod_{\alpha < \omega_1} G_{\alpha}$, where each G_{α} is a second countable Abelian group. Let $G = \Pi^{\omega}$. The subgroup H' of G that consists of all elements of the form (h, h, \ldots) with $h \in H$ is isomorphic to H.

By the Hewitt–Marczewski–Pondiczery theorem there exists a countable dense subset S of Π . Consider the subset D of G of all elements $x \in G$ such that for a finite set of $n_1, \ldots, n_k \in \omega$, $x(n_i) \in S$ and x(n) = 0 for other indices n. It is easy to see that the set D is countable and dense in G. Let $K = \langle D \rangle$ be the subgroup of G generated by D. Then K is a countable dense subgroup of G and $K \cap H' = \{e_G\}$. Since any dense subgroup of a product of second countable groups is \mathbb{R} -factorizable ([8, Corollary 1.10]), we conclude that the subgroup L = K + H' of G is \mathbb{R} -factorizable. On the other hand, since the diagonal $\Delta = \{(x, x, \ldots) : x \in G\}$ of the group $G = \Pi^{\omega}$ is closed in G and $H' \subseteq \Delta$, we have $\overline{H'} \subseteq \Delta$ and $\Delta \cap K = \{e_G\}$, whence $\overline{H'} \cap L = H'$. This means that H' is a closed subgroup of L. For each $x \in K$, x + H' is a closed subset of L and it is easy to see that

$$H' = \bigcap_{x \in K \setminus \{e_G\}} L \setminus (x + H').$$

Hence, $H' \simeq H$ is a closed G_{δ} -subgroup of the \mathbb{R} -factorizable group L = K + H', which is not \mathbb{R} -factorizable.

4. Semi-R-factorizable groups

The fact that a topological group G is \mathbb{R} -factorizable can be expressed in the following form equivalent to the original one: given a continuous function $f: G \to \mathbb{R}$, there exist a closed normal subgroup H of G, a Hausdorff second countable group topology τ for the quotient group G/H coarser than the quotient topology τ_q and a continuous function $h: (G/H, \tau) \to \mathbb{R}$ such that $f = h \circ \pi$, where $\pi: G \to G/H$ is the quotient homomorphism.

The motivation of the definition below arises if one omits the condition of normality of the subgroup $H \subseteq G$. Thus, we define a class of topological groups containing \mathbb{R} -factorizable groups. We will see, however, that the two classes co-incide (Theorem 4.3).

Let H be a closed subgroup of a topological group G and $G/H = \{xH : x \in G\}$ a left coset space with the quotient topology τ_q . A topology $\tau \subseteq \tau_q$ for G/H is called *left-invariant* if the functions $\phi_a: G/H \to G/H$ defined by $\phi_a(xH) = axH$, $x \in G$, are continuous for al $a \in G$. This notation will be used in the proofs of Lemma 4.2 and Theorem 4.3.

Definition 4.1. A topological group G is said to be *semi*- \mathbb{R} -*factorizable* provided that for every continuous function $f: G \to \mathbb{R}$ there exist a closed subgroup H of G, a second countable left-invariant T_1 topology τ on the left coset space G/H coarser than the quotient topology and a continuous function $h: (G/H, \tau) \to \mathbb{R}$ such that $f = h \circ \pi$, where $\pi: G \to G/H$ is the natural projection.

Lemma 4.2. Every semi- \mathbb{R} -factorizable group is \aleph_0 -bounded.

PROOF: Let G be a semi- \mathbb{R} -factorizable group and V an open neighborhood of the identity e in G. Since a topological group is completely regular, there exists a continuous function $f: G \to [0, 1]$ such that f(e) = 1 and $f(G \setminus V) = \{0\}$. Since G is semi- \mathbb{R} -factorizable, there exist a closed subgroup H of G, a left-invariant second countable T_1 topology τ on G/H and a continuous function $h: (G/H, \tau) \to \mathbb{R}$ such that $f = h \circ \pi$, where $\pi: G \to G/H$ is the natural projection. The set $U = h^{-1}(\frac{1}{2}, 1]$ is open in $(G/H, \tau)$ and $e \in \pi^{-1}(h^{-1}(\frac{1}{2}, 1]) = f^{-1}(\frac{1}{2}, 1] \subseteq V$. For each $g \in G$, the function $\sigma_g: G \to G$ defined by $\sigma_g(x) = gx$ is a homeomorphism of G onto G. Note that $\pi \circ \sigma_g = \phi_g \circ \pi$ and, therefore, $f \circ \sigma_g = h \circ \pi \circ \phi_g = h \circ \phi_g \circ \pi$. Since

$$(f \circ \sigma_{x^{-1}})^{-1}(\frac{1}{2}, 1] = \sigma_{x^{-1}}^{-1}(f^{-1}(\frac{1}{2}, 1]) = \sigma_x(f^{-1}(\frac{1}{2}, 1]) \subseteq \sigma_x(V) = xV,$$

we conclude that $U_x = \phi_{x^{-1}}^{-1}(h^{-1}(\frac{1}{2},1])$ is open in $(G/H,\tau)$ and $\pi^{-1}(U_x) \subseteq xV$. The collection $\{U_x : x \in G\}$ covers G/H. Since G/H has countable weight, there exists a sequence x_0, x_1, \ldots of elements of G such that $G/H \subseteq \bigcup_{i=0}^{\infty} U_{x_i}$. Consequently, the family $\{\pi^{-1}(U_{x_i}) : i \in \omega\}$ covers G and, therefore, the corresponding family $\{x_iV : i \in \omega\}$ also covers G. This proves that G is \aleph_0 -bounded. \Box

Theorem 4.3. Every semi- \mathbb{R} -factorizable group is \mathbb{R} -factorizable.

PROOF: Let G be a semi- \mathbb{R} -factorizable group and $f: G \to \mathbb{R}$ a continuous function. Then G has a closed subgroup H such that there exist a left-invariant second countable T_1 topology τ on G/H and a continuous function $h: (G/H, \tau) \to \mathbb{R}$ such that $f = h \circ \pi$, where $\pi: G \to G/H$ is the natural projection. If $\{W_i : i \in \omega\}$ is a local base of G/H at $\{H\}$, then $H = \bigcap_{i \in \omega} \pi^{-1}(W_i)$. Since G is \aleph_0 -bounded (Lemma 4.2), for every $U_i = \pi^{-1}(W_i)$ there exist a continuous homomorphism $\pi_i: G \to H_i$ of G onto a second countable group H_i and a neighborhood V_i of the identity in H_i such that $\pi_i^{-1}(V_i) \subseteq U_i$ (see [3]). Then $N = \bigcap_{i \in \omega} \ker \pi_i$ is a closed normal subgroup of G and $N \subseteq H$. First, we define a second countable

group topology t for G/N. Let $\varphi_i: G/N \to H_i$ be the homomorphism defined by $\varphi_i(aN) = \pi_i(a), a \in G$. Note that φ_i is well-defined because if $b \in aN$ then $a^{-1}b \in N \subseteq \ker \pi_i$, and hence $\pi_i(a) = \pi_i(b)$. Let t be the weakest group topology on G/N that makes each of the homomorphisms φ_i continuous. It is clear that (G/N, t) is a topological group because the topology t is generated by a family of homomorphisms, and t is second countable because each group H_i is second countable. We define the function $\tilde{h}: G/N \to \mathbb{R}$ by $\tilde{h}(aN) = h(aH)$, i.e., $\tilde{h} = h \circ \psi$, where $\psi: G/N \to G/H$ is given by $\psi(aN) = aH$. It is easy to see that ψ is well-defined because the left cosets of N in G are contained in the left cosets of H in G. Let π_N be the natural projection of G onto G/N. Then $\tilde{h} \circ \pi_N = h \circ \psi \circ \pi_N = h \circ \pi = f$ (see Diagram 2 below).

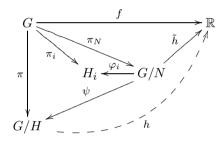


Diagram 2

Finally, we have to prove that the function \tilde{h} is continuous. To this end, it suffices to show that ψ is continuous, that is, for each $A \in G/N$ and each open set $V \in \tau$ containing $\psi(A)$, there exists $U \in t$ with $A \in U$ such that $\psi(U) \subseteq V$. Since A = gN for some $g \in G$, it follows from the definition of ψ that $\psi(A) = gH$. Since the topology τ on G/H is left-invariant, the set V has the form $\phi_g(V')$, where $H \in V' \in \tau$. There exists $i \in \omega$ such that $W_i \subseteq V'$. Recall that $\pi_i^{-1}(V_i) \subseteq$ $U_i = \pi^{-1}(W_i)$ by the choice of the neighborhood V_i of the identity in H_i . Define $O = \varphi_i^{-1}(V_i)$ and $U = a \cdot O$, where $a = \pi_N(g)$. Then $A \in U \in t$ and

$$\psi(U) = \psi(a \cdot O) = \pi(g \cdot \pi_i^{-1}(V_i)) = \phi_g(\pi(\pi_i(V_i)))$$
$$\subseteq \phi_g(\pi(U_i)) \subseteq \phi_g(\pi\pi^{-1}(W_i)) = \phi_g(W_i) \subseteq \phi_g(V') = V.$$

This implies the continuity of ψ , and hence the function $\tilde{h} = h \circ \psi$ is continuous as well.

References

- Comfort W.W., Compactness like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31–37.
- [2] Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483–496.

- [3] Guran I.I., On topological groups close to being Lindelöf, Soviet Math. Dokl. 23 (1981), 173–175.
- [4] Hernández S., Sanchiz M., Tkačenko, M., Bounded sets in spaces and topological groups, submitted for publication.
- [5] Engelking R., General Topology, Heldermann Verlag, 1989.
- [6] Pontryagin L.S., Continuous Groups, Princeton Univ. Press, Princeton, 1939.
- [7] Tkačenko M.G., Subgroups, quotient groups and products of R-factorizable groups, Topology Proceedings 16 (1991), 201–231.
- [8] Tkačenko M.G., Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21–37.

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA METROPOLITANA, IZTAPALAPA, AV. MICHOACÁN Y PURÍSIMA S/N, IZTAPALAPA, C.P. 09340, MÉXICO

E-mail: mich@xanum.uam.mx

chg@xanum.uam.mx

(Received May 12, 1997)