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Subgroups of R-factorizable groups

Constancio Hernández1, Michael Tkačenko1

Abstract. The properties of R-factorizable groups and their subgroups are studied. We
show that a locally compact group G is R-factorizable if and only if G is σ-compact. It
is proved that a subgroup H of an R-factorizable group G is R-factorizable if and only
if H is z-embedded in G. Therefore, a subgroup of an R-factorizable group need not
be R-factorizable, and we present a method for constructing non-R-factorizable dense
subgroups of a special class of R-factorizable groups. Finally, we construct a closed
Gδ-subgroup of an R-factorizable group which is not R-factorizable.

Keywords: R-factorizable group, z-embedded set, ℵ0-bounded group, P -group, Lindelöf
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1. Introduction

A topological group G is called R-factorizable ([7], [8]) if for every continuous
function g:G → R there exist a continuous homomorphism π:G → H of G onto
a second-countable topological group H and a continuous function h:H → R

such that g = h ◦ π. The reals R in this definition can be substituted by any
second countable regular space X , thus giving us a possibility to factorize contin-
uous functions f :G → X via continuous homomorphism onto second countable
topological groups ([8]). The class of R-factorizable groups is sufficiently wide; it
contains all totally bounded groups, σ-compact groups (or, more generally, Lin-
delöf groups) and arbitrary subgroups of Lindelöf Σ-groups ([7], [8]). It is known,
however, that subgroups of R-factorizable groups do not inherit this property ([7,
Example 2]).
In fact, some results on topological groups proved before 1990 can now be

reformulated in terms of R-factorizability. For example, the theorem proved on
pages 118–119 of [6] is equivalent to say that every compact topological group is R-
factorizable. Theorem 1.2 of [2] implies, in particular, that every pseudocompact
topological group is R-factorizable. Note that every pseudocompact group is
totally bounded ([2, Theorem 11]).
Our aim is to study R-factorizable groups and their subgroups. We show first

that a locally compact group is R-factorizable if and only if it is σ-compact (The-
orem 2.3). Then we characterize the subgroups of R-factorizable groups which
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inherit this property: a subgroupH of an R-factorizable group G is R-factorizable
if and only if H is z-embedded in G (Theorem 2.4). A slight modification of a
construction in [7] gives us a lot of dense subgroups of R-factorizable groups which
are not R-factorizable (see Theorem 3.1). We also construct a closed Gδ-subgroup
of an Abelian R-factorizable group which is not R-factorizable (Example 3.2).
Finally, we consider a formally weaker notion of a semi-R-factorizable group

and show that every semi-R-factorizable group is R-factorizable.

2. z-embedded subgroups of topological groups

The notion of an ℵ0-bounded topological group introduced by Guran ([3]) plays
an important rôle in our considerations.

Definition 2.1. A topological group G is said to be ℵ0-bounded if for each
neighborhood U of the identity, there exists a countable subset M ⊆ G such
that G =M · U .

It is known ([3]) that a topological group G is ℵ0-bounded if and only if it
embeds into a cartesian product of second countable topological groups as a topo-
logical subgroup. Although the following result was mentioned in [8], its proof
was only sketched there.

Lemma 2.2. Every R-factorizable group is ℵ0-bounded.

Proof: Let G be an R-factorizable group. It suffices to show that G can be
embedded as a topological subgroup into a product of second countable groups.
Let N (e) be a neighborhood base at the identity e of G. For every neighbor-
hood U ∈ N (e), let fU :G → R be a continuous function such that f(e) = 1
and f(G \ U) = {0}. Since G is R-factorizable, there exist a second countable
group HU , a continuous homomorphism πU :G→ HU and a continuous function
h:HU → R such that f = h ◦πU . Observe that the diagonal product ϕ = ∆{πU :
U ∈ N (e)} is a topological monomorphism of G to the group Π =

∏
{HU : U ∈

N (e)}.
Since second countable groups HU are ℵ0-bounded, the group Π is ℵ0-bounded

as well. Now, subgroups of ℵ0-bounded groups are ℵ0-bounded, so G inherits this
property. �

Theorem 2.3. A locally compact R-factorizable group is σ-compact.

Proof: Suppose that G is a locally compact R-factorizable group. Then there
exists a neighborhood U of the identity of G such that U is compact. Since every
R-factorizable group is ℵ0-bounded (Lemma 2.2), there is a countable subset
C ⊆ G such that C · U = G. Therefore, {g · U : g ∈ C} is a countable family of
compact sets whose union is G. �

Tkačenko [7] showed that subgroups of R-factorizable groups are not necessarily
R-factorizable. On the other hand, an R-factorizable subgroup of an arbitrary
topological group G is z-embedded in G ([4]). In the following theorem we give
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a complete characterization of subgroups of R-factorizable groups which preserve
the property of R-factorizability. Let X be a topological space and let be A ⊆ X .
We say that A is z-embedded in X if every cozero set B in A is of the form
B = A ∩ C, where C is a cozero set in X .

Theorem 2.4. A subgroup H of an R-factorizable group G is R-factorizable if

and only if H is z-embedded in G.

Proof: We shall only give the proof of the fact that z-embedding is a sufficient
condition for the subgroup H to be R-factorizable because the proof of necessity
appears as Theorem 3.1 of [4]. Let f :H → R be a continuous function. Consider
the family γ of all open intervals in R with rational end points. For every U ∈
γ, let VU be a cozero set in G such that VU ∩ H = f−1(U). There exists a

continuous function gU :G → R such that g−1U (U) = VU . The diagonal product
g = ∆U∈γgU is a continuous mapping of G to the second countable space R

γ and,
by R-factorizability of G, there exist a continuous homomorphism π of G onto a
second countable topological group G∗ and a continuous function g∗:G∗ → R

γ

such that g = g∗ ◦ π.
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We claim that for any x0, x1 ∈ H , f(x0) = f(x1) whenever π(x0) = π(x1).
Assume the contrary, let f(x0) 6= f(x1) for some x0, x1 ∈ H with π(x0) =
π(x1). We can also assume that f(x0) < f(x1). If r0, r1 and r2 are rationals
and r0 < f(x0) < r1 < f(x1) < r2, consider the intervals U0 = (r0, r1) ∈ γ
and U1 = (r1, r2) ∈ γ. Let pUi

:Rγ → R = RUi
be the natural projections,

g ◦ pUi
= gUi

(i = 0, 1). On the one hand, the sets g−1U0 (U0) ∩H = f−1(U0) and

g−1U1 (U1) ∩H = f
−1(U1) are disjoint. This is equivalent to say that g

−1(O0) ∩H

and g−1(O1) ∩ H are disjoint, where Oi = p−1Ui
(Ui) ∋ g(xi) (i = 0, 1). In

particular, g(x0) 6= g(x1). On the other hand, g = g
∗ ◦ π, whence g(x0) = g(x1),

a contradiction.
Put H∗ = π(H). The assertion just proved implies that there exists a function

g∗:H
∗ → R such that f = g∗ ◦ π ↾H . It remains to verify that g∗ is continuous.

Let U ∈ γ be arbitrary. Then

g−1∗ (U) = π
(
f−1(U)

)
= π

(
g−1U (U) ∩H

)
= (g∗)−1

(
p−1U (U)

)
∩ π(H)

is open in π(H) = H∗. Since γ is a base for R, this proves the continuity of g∗.
Thus, we have f = g∗ ◦ ϕ, where ϕ = π ↾H is a continuous homomorphism of H
onto the second countable group H∗ ⊆ G∗, and hence H is R-factorizable. �
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It is clear that every retract of a space X is z-embedded in X . Indeed, if
r:X → X is a retraction and Y = r(X), then for each continuous function

f :Y → R, the function f̂ = f ◦ r is a continuous extension of f to X . Note also
that if G is a topological group and H is an open subgroup of G, then H is a
retract of G. Indeed, in every left coset U of H in G, pick a point xU ∈ U . Define
r:G → H in the following way: if g ∈ H , then f(g) = g; if g ∈ U and U 6= H ,

put r(g) = x−1U g. Since the left cosets are open and disjoint, the continuity of r
is immediate. From these two observations we deduce the following results.

Corollary 2.5. Let G be an R-factorizable group and H a subgroup of G. If H
is a retract of G, then H is R-factorizable.

Corollary 2.6. An open subgroup of an R-factorizable group is R-factorizable.

3. Some examples

By Corollary 1.13 of [8], every Lindelöf topological group is R-factorizable. Let
us call a topological group G a P -group if any intersection of countably many
open sets in G is open. Making use of the existence of a special Lindelöf P -group

Ĝ of weight ℵ1 (see [1]), Tkačenko [7] constructed an example of a proper dense

subgroup of Ĝ which was not R-factorizable. Our aim is to show that any proper
dense subgroup of an arbitrary Lindelöf P -group of weight ℵ1 is not R-factorizable.

Theorem 3.1. If H is a proper dense subgroup of a Lindelöf P -group G of
weight ℵ1, then H is not R-factorizable.

Proof: Since G is a P -group, it is zero-dimensional. Therefore, we choose a base
B = {Oα : α < ω1} at the identity e of G satisfying the following conditions for
each α < ω1:

(1) Oα is a clopen set;
(2) Oα =

⋂
β<αOβ for any limit ordinal α < ω1;

(4) O2α+1 ⊂ Oα;

(3) Oα \ Oα+1 = Aα ∪ Bα where Aα and Bα are nonempty disjoint clopen
sets.

Now define U ′ and V ′ by U ′ = (G \ O0) ∪ (
⋃
α<ω1

Aα) and V
′ =

⋃
α<ω1

Bα.

From conditions (1) and (4) it follows that U ′ and V ′ are open sets. Conditions
(2) and (4) imply that U ′ ∪ V ′ = G \ {e}. Finally, (3) guarantees that U ′ and V ′

are nonempty.
Pick a point g ∈ G \H and define U = gU ′ ∩H and V = gV ′ ∩H . Then U

and V are non-empty open subsets of H and H = U ∪ V . Let f be the function
on H defined by the rule f(x) = 0 if x ∈ U ∩H and f(x) = 1 if x ∈ V ∩H . It is
easy to see that f is continuous. Let π:H → K be a continuous homomorphism
of H to a metrizable group K. Then the kernel of π is a Gδ-set in H , and hence
is an open neighborhood of e. So, we can find α < ω1 such that Oα ∩H ⊆ kerπ.
Pick points a ∈ H ∩ gAα+1 and b ∈ H ∩ gBα+1. Then ab

−1 ∈ Oα by (3) and
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(4), which in turn implies that π(a) = π(b), whereas f(a) = 0 and f(b) = 1. This
means that the group H is not R-factorizable. �

The above theorem shows that there are many subgroups of R-factorizable
groups which are not R-factorizable. In special classes of R-factorizable groups
the situation changes: by Corollary 1.13 of [8], every subgroup of a σ-compact
topological group is R-factorizable. Intuitively, Gδ-subgroups of a topological
group seem close to be z-embedded in it. Thus, Theorem 2.4 might suggest the
conjecture that a closed Gδ-subgroup of an R-factorizable group is R-factorizable
as well. We show below that this is not the case.

Example 3.2. Let H be an ℵ0-bounded Abelian group of weight ℵ1 which is not
R-factorizable ([7, Example 2.1]). By a theorem of Guran [3], H can be considered
as a subgroup of a product Π =

∏
α<ω1

Gα, where each Gα is a second countable

Abelian group. Let G = Πω. The subgroup H ′ of G that consists of all elements
of the form (h, h, . . . ) with h ∈ H is isomorphic to H .
By the Hewitt–Marczewski–Pondiczery theorem there exists a countable dense

subset S of Π. Consider the subset D of G of all elements x ∈ G such that
for a finite set of n1, . . . , nk ∈ ω, x(ni) ∈ S and x(n) = 0 for other indices n.
It is easy to see that the set D is countable and dense in G. Let K = 〈D〉
be the subgroup of G generated by D. Then K is a countable dense subgroup
of G and K ∩ H ′ = {eG}. Since any dense subgroup of a product of second
countable groups is R-factorizable ([8, Corollary 1.10]), we conclude that the
subgroup L = K + H ′ of G is R-factorizable. On the other hand, since the
diagonal ∆ = {(x, x, . . . ) : x ∈ G} of the group G = Πω is closed in G and

H ′ ⊆ ∆, we have H ′ ⊆ ∆ and ∆ ∩K = {eG}, whence H ′ ∩ L = H ′. This means
that H ′ is a closed subgroup of L. For each x ∈ K, x +H ′ is a closed subset of
L and it is easy to see that

H ′ =
⋂

x∈K\{eG}

L \ (x+H ′).

Hence, H ′ ≃ H is a closed Gδ-subgroup of the R-factorizable group L = K +H ′,
which is not R-factorizable.

4. Semi-R-factorizable groups

The fact that a topological group G is R-factorizable can be expressed in the
following form equivalent to the original one: given a continuous function f :G→
R, there exist a closed normal subgroup H of G, a Hausdorff second countable
group topology τ for the quotient group G/H coarser than the quotient topology
τq and a continuous function h: (G/H, τ)→ R such that f = h ◦ π, where π:G→
G/H is the quotient homomorphism.
The motivation of the definition below arises if one omits the condition of nor-

mality of the subgroup H ⊆ G. Thus, we define a class of topological groups
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containing R-factorizable groups. We will see, however, that the two classes co-
incide (Theorem 4.3).
Let H be a closed subgroup of a topological group G and G/H = {xH : x ∈ G}

a left coset space with the quotient topology τq. A topology τ ⊆ τq for G/H is
called left-invariant if the functions φa:G/H → G/H defined by φa(xH) = axH ,
x ∈ G, are continuous for al a ∈ G. This notation will be used in the proofs of
Lemma 4.2 and Theorem 4.3.

Definition 4.1. A topological group G is said to be semi-R-factorizable provided
that for every continuous function f :G → R there exist a closed subgroup H of
G, a second countable left-invariant T1 topology τ on the left coset space G/H
coarser than the quotient topology and a continuous function h: (G/H, τ) → R

such that f = h ◦ π, where π:G→ G/H is the natural projection.

Lemma 4.2. Every semi-R-factorizable group is ℵ0-bounded.

Proof: Let G be a semi-R-factorizable group and V an open neighborhood of
the identity e in G. Since a topological group is completely regular, there exists a
continuous function f :G→ [0, 1] such that f(e) = 1 and f(G\V ) = {0}. Since G
is semi-R-factorizable, there exist a closed subgroupH ofG, a left-invariant second
countable T1 topology τ on G/H and a continuous function h: (G/H, τ) → R

such that f = h ◦ π, where π:G → G/H is the natural projection. The set

U = h−1(12 , 1] is open in (G/H, τ) and e ∈ π−1(h−1(12 , 1]) = f−1(12 , 1] ⊆ V . For
each g ∈ G, the function σg :G → G defined by σg(x) = gx is a homeomorphism
of G onto G. Note that π◦σg = φg◦π and, therefore, f ◦σg = h◦π◦φg = h◦φg◦π.
Since

(f ◦ σx−1)
−1(12 , 1] = σ

−1
x−1
(f−1(12 , 1]) = σx(f

−1(12 , 1]) ⊆ σx(V ) = xV,

we conclude that Ux = φ−1
x−1
(h−1(12 , 1]) is open in (G/H, τ) and π

−1(Ux) ⊆ xV .

The collection {Ux : x ∈ G} covers G/H . Since G/H has countable weight, there
exists a sequence x0, x1, . . . of elements of G such that G/H ⊆

⋃∞
i=0 Uxi

. Conse-

quently, the family {π−1(Uxi
) : i ∈ ω} covers G and, therefore, the corresponding

family {xiV : i ∈ ω} also covers G. This proves that G is ℵ0-bounded. �

Theorem 4.3. Every semi-R-factorizable group is R-factorizable.

Proof: Let G be a semi-R-factorizable group and f :G → R a continuous func-
tion. Then G has a closed subgroupH such that there exist a left-invariant second
countable T1 topology τ on G/H and a continuous function h: (G/H, τ)→ R such
that f = h ◦ π, where π:G → G/H is the natural projection. If {Wi : i ∈ ω} is
a local base of G/H at {H}, then H =

⋂
i∈ω π

−1(Wi). Since G is ℵ0-bounded

(Lemma 4.2), for every Ui = π−1(Wi) there exist a continuous homomorphism
πi:G → Hi of G onto a second countable group Hi and a neighborhood Vi of
the identity in Hi such that π

−1
i (Vi) ⊆ Ui (see [3]). Then N =

⋂
i∈ω kerπi is a

closed normal subgroup of G and N ⊆ H . First, we define a second countable
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group topology t for G/N . Let ϕi:G/N → Hi be the homomorphism defined
by ϕi(aN) = πi(a), a ∈ G. Note that ϕi is well-defined because if b ∈ aN
then a−1b ∈ N ⊆ kerπi, and hence πi(a) = πi(b). Let t be the weakest group
topology on G/N that makes each of the homomorphisms ϕi continuous. It is
clear that (G/N, t) is a topological group because the topology t is generated by
a family of homomorphisms, and t is second countable because each group Hi
is second countable. We define the function h̃:G/N → R by h̃(aN) = h(aH),

i.e., h̃ = h ◦ ψ, where ψ:G/N → G/H is given by ψ(aN) = aH . It is easy to
see that ψ is well-defined because the left cosets of N in G are contained in the
left cosets of H in G. Let πN be the natural projection of G onto G/N . Then

h̃ ◦ πN = h ◦ ψ ◦ πN = h ◦ π = f (see Diagram 2 below).
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Diagram 2

Finally, we have to prove that the function h̃ is continuous. To this end, it suffices
to show that ψ is continuous, that is, for each A ∈ G/N and each open set V ∈ τ
containing ψ(A), there exists U ∈ t with A ∈ U such that ψ(U) ⊆ V . Since
A = gN for some g ∈ G, it follows from the definition of ψ that ψ(A) = gH .
Since the topology τ on G/H is left-invariant, the set V has the form φg(V

′),

where H ∈ V ′ ∈ τ . There exists i ∈ ω such that Wi ⊆ V ′. Recall that π−1i (Vi) ⊆

Ui = π
−1(Wi) by the choice of the neighborhood Vi of the identity in Hi. Define

O = ϕ−1i (Vi) and U = a ·O, where a = πN (g). Then A ∈ U ∈ t and

ψ(U) = ψ(a ·O) = π(g · π−1i (Vi)) = φg(π(πi(Vi)))

⊆ φg(π(Ui)) ⊆ φg(ππ
−1(Wi)) = φg(Wi) ⊆ φg(V

′) = V.

This implies the continuity of ψ, and hence the function h̃ = h ◦ ψ is continuous
as well. �

References

[1] Comfort W.W., Compactness like properties for generalized weak topological sums, Pacific
J. Math. 60 (1975), 31–37.

[2] Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological
groups, Pacific J. Math. 16 (1966), 483–496.



378 C.Hernández, M.Tkačenko
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[7] Tkačenko M.G., Subgroups, quotient groups and products of R-factorizable groups, Topo-
logy Proceedings 16 (1991), 201–231.

[8] Tkačenko M.G., Factorization theorems for topological groups and their applications, To-
pology Appl. 38 (1991), 21–37.
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