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Subgroups of R-factorizable groups

CONSTANCIO HERNANDEZ!, MICHAEL TKAGENKO!

Abstract. The properties of R-factorizable groups and their subgroups are studied. We
show that a locally compact group G is R-factorizable if and only if G is o-compact. It
is proved that a subgroup H of an R-factorizable group G is R-factorizable if and only
if H is z-embedded in G. Therefore, a subgroup of an R-factorizable group need not
be R-factorizable, and we present a method for constructing non-R-factorizable dense
subgroups of a special class of R-factorizable groups. Finally, we construct a closed
G s-subgroup of an R-factorizable group which is not R-factorizable.
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1. Introduction

A topological group G is called R-factorizable ([7], [8]) if for every continuous
function g: G — R there exist a continuous homomorphism 7: G — H of G onto
a second-countable topological group H and a continuous function h: H — R
such that ¢ = h om. The reals R in this definition can be substituted by any
second countable regular space X, thus giving us a possibility to factorize contin-
uous functions f:G — X via continuous homomorphism onto second countable
topological groups ([8]). The class of R-factorizable groups is sufficiently wide; it
contains all totally bounded groups, o-compact groups (or, more generally, Lin-
deldf groups) and arbitrary subgroups of Lindel6f X-groups ([7], [8]). It is known,
however, that subgroups of R-factorizable groups do not inherit this property ([7,
Example 2]).

In fact, some results on topological groups proved before 1990 can now be
reformulated in terms of R-factorizability. For example, the theorem proved on
pages 118-119 of [6] is equivalent to say that every compact topological group is R-
factorizable. Theorem 1.2 of [2] implies, in particular, that every pseudocompact
topological group is R-factorizable. Note that every pseudocompact group is
totally bounded ([2, Theorem 11]).

Our aim is to study R-factorizable groups and their subgroups. We show first
that a locally compact group is R-factorizable if and only if it is o-compact (The-
orem 2.3). Then we characterize the subgroups of R-factorizable groups which
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inherit this property: a subgroup H of an R-factorizable group G is R-factorizable
if and only if H is z-embedded in G (Theorem 2.4). A slight modification of a
construction in [7] gives us a lot of dense subgroups of R-factorizable groups which
are not R-factorizable (see Theorem 3.1). We also construct a closed Gg-subgroup
of an Abelian R-factorizable group which is not R-factorizable (Example 3.2).

Finally, we consider a formally weaker notion of a semi-R-factorizable group
and show that every semi-R-factorizable group is R-factorizable.

2. z-embedded subgroups of topological groups

The notion of an Rg-bounded topological group introduced by Guran ([3]) plays
an important role in our considerations.

Definition 2.1. A topological group G is said to be Rg-bounded if for each
neighborhood U of the identity, there exists a countable subset M C G such
that G=M - U.

It is known ([3]) that a topological group G is Rg-bounded if and only if it
embeds into a cartesian product of second countable topological groups as a topo-
logical subgroup. Although the following result was mentioned in [8], its proof
was only sketched there.

Lemma 2.2. Every R-factorizable group is Rg-bounded.

PrOOF: Let G be an R-factorizable group. It suffices to show that G can be
embedded as a topological subgroup into a product of second countable groups.
Let N(e) be a neighborhood base at the identity e of G. For every neighbor-
hood U € N(e), let fi;: G — R be a continuous function such that f(e) = 1
and f(G\U) = {0}. Since G is R-factorizable, there exist a second countable
group Hy, a continuous homomorphism 77: G — Hy and a continuous function
h: Hyy — R such that f = homy. Observe that the diagonal product ¢ = A{ny :
U € N(e)} is a topological monomorphism of G to the group Il = [[{Hy : U €
N(e)}.

Since second countable groups Hy; are Ng-bounded, the group II is Rg-bounded
as well. Now, subgroups of Rg-bounded groups are Ng-bounded, so G inherits this
property. (I

Theorem 2.3. A locally compact R-factorizable group is o-compact.

PROOF: Suppose that G is a locally compact R-factorizable group. Then there
exists a neighborhood U of the identity of G such that U is compact. Since every
R-factorizable group is Np-bounded (Lemma 2.2), there is a countable subset
C C G such that C' - U = G. Therefore, {g-U : g € C} is a countable family of
compact sets whose union is G. ([

Tkacenko [7] showed that subgroups of R-factorizable groups are not necessarily
R-factorizable. On the other hand, an R-factorizable subgroup of an arbitrary
topological group G is z-embedded in G ([4]). In the following theorem we give
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a complete characterization of subgroups of R-factorizable groups which preserve
the property of R-factorizability. Let X be a topological space and let be A C X.
We say that A is z-embedded in X if every cozero set B in A is of the form
B = ANC, where C is a cozero set in X.

Theorem 2.4. A subgroup H of an R-factorizable group G is R-factorizable if
and only if H is z-embedded in G.

PRrOOF: We shall only give the proof of the fact that z-embedding is a sufficient
condition for the subgroup H to be R-factorizable because the proof of necessity
appears as Theorem 3.1 of [4]. Let f: H — R be a continuous function. Consider
the family « of all open intervals in R with rational end points. For every U &
7, let Vi be a cozero set in G such that Vi N H = f~1(U). There exists a
continuous function g;r: G — R such that g[}l(U ) = V7. The diagonal product
9 = Ayeqgu is a continuous mapping of G to the second countable space R7 and,
by R-factorizability of GG, there exist a continuous homomorphism 7 of G onto a
second countable topological group G* and a continuous function ¢g*: G* — RY
such that g = g* o 7.

G g —L R
A
gu ™
/gl \ l%p | 9=
* [
Ry <2 Ry <L — ¢ OH*
Diagram 1

We claim that for any zg, z1 € H, f(z9) = f(x1) whenever n(zg) = n(x1).
Assume the contrary, let f(xg) # f(x1) for some zg, x1 € H with 7(zg) =
m(xz1). We can also assume that f(xg) < f(x1). If ro,71 and 7o are rationals
and 79 < f(xg) < r1 < f(x1) < 72, consider the intervals Uy = (rg,71) € 7
and Uy = (r1,72) € 7. Let py;:RY — R = Ry, be the natural projections,
gopy, = gy, (i =0, 1). On the one hand, the sets g[}Ol(Uo) NH = f"1(Uy) and
g[_Jll(Ul) NH = f~YUy) are disjoint. This is equivalent to say that g~1(Og) N H
and ¢g~1(01) N H are disjoint, where O; = p[_]il(Ui) 3 g(z;) i =10,1). In
particular, g(zg) # g(x1). On the other hand, g = g* o 7, whence g(zo) = g(z1),
a contradiction.

Put H* = w(H). The assertion just proved implies that there exists a function
g«: H* — R such that f = g« o7 [g. It remains to verify that g, is continuous.
Let U € v be arbitrary. Then

g ') = 7 (f7H0)) = (9" ©) N H) = (¢) " (py" (U)) N (H)
is open in w(H) = H*. Since v is a base for R, this proves the continuity of gs.
Thus, we have f = g« o o, where ¢ = 7 [ is a continuous homomorphism of H
onto the second countable group H* C G*, and hence H is R-factorizable. (Il
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It is clear that every retract of a space X is z-embedded in X. Indeed, if
r: X — X is a retraction and Y = r(X), then for each continuous function
f:Y — R, the function f = f or is a continuous extension of f to X. Note also
that if G is a topological group and H is an open subgroup of G, then H is a
retract of G. Indeed, in every left coset U of H in G, pick a point 2y € U. Define
r:G — H in the following way: if g € H, then f(g) = g;if g € U and U # H,
put 7(g) = xal g. Since the left cosets are open and disjoint, the continuity of r
is immediate. From these two observations we deduce the following results.

Corollary 2.5. Let G be an R-factorizable group and H a subgroup of G. If H
is a retract of G, then H is R-factorizable.

Corollary 2.6. An open subgroup of an R-factorizable group is R-factorizable.

3. Some examples

By Corollary 1.13 of [8], every Lindel6f topological group is R-factorizable. Let
us call a topological group G a P-group if any intersection of countably many
open sets in G is open. Making use of the existence of a special Lindelof P-group
G of weight N (see [1]), Tkacenko [7] constructed an example of a proper dense
subgroup of G which was not R-factorizable. Our aim is to show that any proper
dense subgroup of an arbitrary Lindel6f P-group of weight X is not R-factorizable.

Theorem 3.1. If H is a proper dense subgroup of a Lindel6f P-group G of
weight N1, then H is not R-factorizable.

PROOF: Since G is a P-group, it is zero-dimensional. Therefore, we choose a base
B ={0q: a < w1} at the identity e of G satisfying the following conditions for
each a < wy:

(1) Oq is a clopen set;

2) Oa =(g<q Op for any limit ordinal o < wy;

(2)
(4) 0311 C Oa;
(3) O

3) Oq \ Og+1 = Aq U By where A, and B, are nonempty disjoint clopen
sets.
Now define U’ and V' by U’ = (G'\ Op) U (Ug<y, 4a) and V' = U,y Ba-

From conditions (1) and (4) it follows that U’ and V' are open sets. Conditions
(2) and (4) imply that U’ UV’ = G\ {e}. Finally, (3) guarantees that U’ and V'
are nonempty.

Pick a point g € G\ H and define U = gU’' N H and V = gV' N H. Then U
and V are non-empty open subsets of H and H = U U V. Let f be the function
on H defined by the rule f(z) =0ifz € UNH and f(x)=1ifz € VNH. Itis
easy to see that f is continuous. Let m: H — K be a continuous homomorphism
of H to a metrizable group K. Then the kernel of 7 is a Gs-set in H, and hence
is an open neighborhood of e. So, we can find o < w1 such that Oy N H C ker .
Pick points a € H N gAa+1 and b € H N gBay1. Then ab™! € O, by (3) and



Subgroups of R-factorizable groups

(4), which in turn implies that 7(a) = m(b), whereas f(a) = 0 and f(b) = 1. This
means that the group H is not R-factorizable. O

The above theorem shows that there are many subgroups of R-factorizable
groups which are not R-factorizable. In special classes of R-factorizable groups
the situation changes: by Corollary 1.13 of [8], every subgroup of a o-compact
topological group is R-factorizable. Intuitively, Ggs-subgroups of a topological
group seem close to be z-embedded in it. Thus, Theorem 2.4 might suggest the
conjecture that a closed Gg-subgroup of an R-factorizable group is R-factorizable
as well. We show below that this is not the case.

Example 3.2. Let H be an Ng-bounded Abelian group of weight Xy which is not
R-factorizable ([7, Example 2.1]). By a theorem of Guran [3], H can be considered
as a subgroup of a product IT =[], , Ga, where each G is a second countable
Abelian group. Let G = II*. The subgroup H' of G that consists of all elements
of the form (h, h,...) with h € H is isomorphic to H.

By the Hewitt—-Marczewski—Pondiczery theorem there exists a countable dense
subset S of II. Consider the subset D of G of all elements x € G such that
for a finite set of ny,...,n; € w, z(n;) € S and z(n) = 0 for other indices n.
It is easy to see that the set D is countable and dense in G. Let K = (D)
be the subgroup of G generated by D. Then K is a countable dense subgroup
of G and K N H' = {eg}. Since any dense subgroup of a product of second
countable groups is R-factorizable ([8, Corollary 1.10]), we conclude that the
subgroup L = K + H' of G is R-factorizable. On the other hand, since the
diagonal A = {(z,z,...) : © € G} of the group G = II* is closed in G and
H' C A, we have H C A and AN K = {eg}, whence H' N L = H'. This means
that H’ is a closed subgroup of L. For each z € K,  + H' is a closed subset of
L and it is easy to see that

H= () L\(@z+H)
veK\{eq}

Hence, H' ~ H is a closed Gg-subgroup of the R-factorizable group L = K + H’,
which is not R-factorizable.

4. Semi-R-factorizable groups

The fact that a topological group G is R-factorizable can be expressed in the
following form equivalent to the original one: given a continuous function f: G —
R, there exist a closed normal subgroup H of G, a Hausdorff second countable
group topology 7 for the quotient group G/H coarser than the quotient topology
74 and a continuous function h: (G/H,T) — R such that f = hon, where m: G —
G/H is the quotient homomorphism.

The motivation of the definition below arises if one omits the condition of nor-
mality of the subgroup H C G. Thus, we define a class of topological groups
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containing R-factorizable groups. We will see, however, that the two classes co-
incide (Theorem 4.3).

Let H be a closed subgroup of a topological group G and G/H = {zH : x € G}
a left coset space with the quotient topology 74. A topology 7 C 7, for G/H is
called left-invariant if the functions ¢4: G/H — G/H defined by ¢q(zH) = axH,
x € @, are continuous for al @ € G. This notation will be used in the proofs of
Lemma 4.2 and Theorem 4.3.

Definition 4.1. A topological group G is said to be semi-R-factorizable provided
that for every continuous function f: G — R there exist a closed subgroup H of
G, a second countable left-invariant 77 topology 7 on the left coset space G/H
coarser than the quotient topology and a continuous function h: (G/H,7) — R
such that f = h o, where m: G — G/H is the natural projection.

Lemma 4.2. Every semi-R-factorizable group is Rg-bounded.

PROOF: Let G be a semi-R-factorizable group and V an open neighborhood of
the identity e in G. Since a topological group is completely regular, there exists a
continuous function f: G — [0, 1] such that f(e) =1 and f(G\V) = {0}. Since G
is semi-R-factorizable, there exist a closed subgroup H of G, a left-invariant second
countable T} topology 7 on G/H and a continuous function h: (G/H,7) — R
such that f = hom, where m:G — G/H is the natural projection. The set
U=h"Y3,1] is open in (G/H,7) and e € n~1(h"1(3,1]) = f~1(,1] C V. For
each g € G, the function 04: G — G defined by o4(x) = gx is a homeomorphism
of G onto G. Note that mooy = ¢gom and, therefore, fooy = homogy = hoggom.
Since

(fooe1) (51 =0, i(f 71 (5, 1)) = 0u(F (3, 1)) C ou(V) = 2V,

we conclude that U, = gb;,ll(h_l(%, 1]) is open in (G/H,7) and 7~ Y(U,) C zV.
The collection {Uy : © € G} covers G/H. Since G/H has countable weight, there
exists a sequence g, x1, ... of elements of G such that G/H C |2, Uz,. Conse-
quently, the family {7~1(Uy,) : i € w} covers G and, therefore, the corresponding
family {z;V :i € w} also covers G. This proves that G is No-bounded. O

Theorem 4.3. Every semi-R-factorizable group is R-factorizable.

PRrROOF: Let G be a semi-R-factorizable group and f: G — R a continuous func-
tion. Then G has a closed subgroup H such that there exist a left-invariant second
countable T topology 7 on G/H and a continuous function h: (G/H, ) — R such
that f = hon, where m: G — G/H is the natural projection. If {W; : i € w} is
a local base of G/H at {H}, then H = (\;c,, 7 1(W;). Since G is No-bounded
(Lemma 4.2), for every U; = 7~ 1(W;) there exist a continuous homomorphism
mi:G — H; of G onto a second countable group H; and a neighborhood V; of
the identity in H; such that wi_l(Vi) C U; (see [3]). Then N = (), kerm; is a
closed normal subgroup of G and N C H. First, we define a second countable
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group topology ¢ for G/N. Let ¢;: G/N — H; be the homomorphism defined
by ¢;(aN) = m(a), a € G. Note that ¢; is well-defined because if b € aN
then a='b € N C kerm;, and hence m;(a) = m;(b). Let t be the weakest group
topology on G/N that makes each of the homomorphisms ¢; continuous. It is
clear that (G/N,t) is a topological group because the topology t is generated by
a family of homomorphisms, and ¢ is second countable because each group H;
is second countable. We define the function h: G/N — R by h(aN) = h(aH),
ie., h = hot, where ¥:G/N — G/H is given by ¢(aN) = aH. It is easy to
see that v is well-defined because the left cosets of NV in G are contained in the
left cosets of H in G. Let 7y be the natural projection of G onto G/N. Then
]~7,07TN =hotomy =hom = f (see Diagram 2 below).

\ /,,

H; <“—G/N //
b

G/H _—~"h

Diagram 2

Finally, we have to prove that the function h is continuous. To this end, it suffices
to show that 4 is continuous, that is, for each A € G/N and each openset V € 7
containing ¢ (A), there exists U € ¢t with A € U such that ¢(U) C V. Since
A = gN for some g € G, it follows from the definition of ¢ that ¢(A4) = gH.
Since the topology 7 on G/H is left-invariant, the set V has the form ¢q(V’),
where H € V' € 7. There exists i € w such that W, C V’. Recall that wi_l(Vi) C
U; = n—Y(W;) by the choice of the neighborhood V; of the identity in H;. Define
0= <pi_1(V,~) and U = a - O, where a = mjn(g). Then A € U € ¢t and

Y(U) =2(a-0) =n(g-m; (V) = ¢g(n(m:(V)))
C ¢g(m(Ui)) € pg(mm ™ (W5)) = ¢g(W;) C (V') = V.

This implies the continuity of v, and hence the function h=ho 1) is continuous
as well. O

REFERENCES

[1] Comfort W.W., Compactness like properties for generalized weak topological sums, Pacific
J. Math. 60 (1975), 31-37.

[2] Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological
groups, Pacific J. Math. 16 (1966), 483-496.

377



378 C. Hernandez, M. Tkacenko

[3] Guran LI, On topological groups close to being Lindeldf, Soviet Math. Dokl. 23 (1981),
173-175.

[4] Herndndez S., Sanchiz M., Tka¢enko, M., Bounded sets in spaces and topological groups,
submitted for publication.

[5] Engelking R., General Topology, Heldermann Verlag, 1989.

Pontryagin L.S., Continuous Groups, Princeton Univ. Press, Princeton, 1939.

[7] Tkatenko M.G., Subgroups, quotient groups and products of R-factorizable groups, Topo-
logy Proceedings 16 (1991), 201-231.

[8] Tkatenko M.G., Factorization theorems for topological groups and their applications, To-
pology Appl. 38 (1991), 21-37.

=

DEPARTAMENTO DE MATEMATICAS, UNIVERSIDAD AUTONOMA METROPOLITANA, IZTAPALAPA,
Av. MICHOACAN Y PURISIMA s/N, IzTapaLAPA, C.P. 09340, MEXICO

E-mail: mich@xanum.uam.mx
chg@xanum.uam.mx

(Received May 12,1997)



