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Singularities and equicontinuity of certain families

of set-valued mappings

Tiberiu Trif

Abstract. In the present paper we establish an abstract principle of condensation of
singularities for families consisting of set-valued mappings. By using it as a basic tool, the
condensation of the singularities and the equicontinuity of certain families of generalized
convex set-valued mappings are studied. In particular, a principle of condensation of the
singularities of families of closed convex processes is derived. This principle immediately
yields the uniform boundedness theorem stated in [1, Theorem 2.3.1].
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1. Introduction

Many textbooks consider the following principle of uniform boundedness as
one of the most important results in functional analysis.

Theorem 1.1. Let X be a Banach space, let Y be a normed linear space, and
let F be a family of continuous linear mappings from X into Y such that

sup {‖f(x)‖ | f ∈ F} < ∞ for all x ∈ X.

Then sup {‖f‖ | f ∈ F} < ∞.

This theorem reveals that if sup {‖f‖ | f ∈ F} =∞, then there exists at least
one singularity of F , i.e. a point x ∈ X such that sup {‖f(x)‖ | f ∈ F} =∞. More
informations about the set of singularities of F can be obtained if the following
principle of condensation of the singularities is applied instead of the uniform
boundedness principle.

Theorem 1.2. Let X be a Banach space, let Y be a normed linear space, and
let F be a family of continuous linear mappings from X into Y such that

sup {‖f‖ | f ∈ F} =∞.

Then the set SF of all x ∈ X for which

sup {‖f(x)‖ | f ∈ F} =∞
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is residual.

Theorem 1.2 has been generalized by numerous authors and in several direc-
tions. Here we merely mention the investigations by W.W. Breckner [3], who
established a principle of condensation of singularities for lower semicontinuous
mappings defined on a topological space and taking values in the power set of
a topological space. In the present paper we continue these investigations, but
unlike W.W. Breckner we deal with families of set-valued mappings defined on
topological spaces. In Section 2 we introduce the concept of a singularity for
such families and after that we prove a general principle of condensation of the
singularities of a family consisting of arbitrary upper semicontinuous set-valued
mappings. In the following three sections we give several applications of this
principle under the assumption that the involved set-valued mappings have some
additional algebraic properties. They relate to families that consist either of
(A, s)-convex set-valued mappings or of (A, s)-convex real-valued mappings that
are not equicontinuous at the origin as well as to families of closed convex pro-
cesses. An important corollary is the uniform boundedness theorem involving
closed convex processes which has been stated by J.P. Aubin and H. Frankowska
[1, Theorem 2.3.1].
Throughout the paper the set of all positive integers is denoted by N. Given

any subset M of a topological space, we denote by clM its closure. Given any
set Y , we denote by P0(Y ) the set consisting of all nonempty subsets of Y . Given
a topological linear space X , we denote by Oac(X) the class consisting of all
nonempty, open and absolutely convex subsets of X .

2. An abstract principle of condensation of the singularities

of families of set-valued mappings

Let X and Y be topological spaces, let F be a mapping from X to 2Y , and let
x0 be any point of X . Recall that F is said to be upper semicontinuous at x0 if
for every open subset Y0 of Y with F (x0) ⊆ Y0, there exists a neighbourhood V
of x0 such that F (x) ⊆ Y0 for all x ∈ V . If F is upper semicontinuous at each
point of X , then F is called upper semicontinuous (on X).

Let I be a nonempty set, let B : I × N → 2Y be a mapping whose values are
closed subsets of Y , and let F be a family of mappings from X to P0(Y ).
We say that F is B-bounded at a point x0 ∈ X if there exists a family {yF | F ∈

F} with yF ∈ F (x0) (F ∈ F), satisfying the following condition: for every i ∈ I
one can select a positive integer n such that {yF | F ∈ F} ⊆ B(i, n). If F is B-
bounded at each point of X , then we say that F is pointwise B-bounded (on X).
A point in X at which F is not B-bounded is called a B-singularity of F . The set
of all B-singularities of F will be denoted by SF (B). Obviously, F is pointwise
B-bounded if and only if the set SF (B) is empty.
We say that F is uniformly B-bounded if for every i ∈ I there exist a positive

integer n and a nonempty open subset X0 of X satisfying the following condition:
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for each point x ∈ X0 one can select a family {yF | F ∈ F} with yF ∈ F (x) (F ∈
F) such that {yF | F ∈ F} ⊆ B(i, n).
The above definitions are inspired by [1] and [3]. After these preliminaries we

are in position to state the main result of the paper.

Theorem 2.1. Let X and Y be topological spaces, and let F be a family of upper
semicontinuous mappings from X to P0(Y ) which is not uniformly B-bounded.
Then the following assertions are true:

1◦ SF (B) is a residual set;

2◦ if in addition X is of second category, then SF (B) is of second category and
hence nonempty;

3◦ if in addition X is a Baire space satisfying the separation axiom T1 and

without isolated points, then SF (B) is of second category and uncountable.

Proof: 1◦ Since F is not uniformly B-bounded, choose i ∈ I such that for every
positive integer n and every nonempty open subset X0 of X there exist a point
x ∈ X0 and a mapping F ∈ F satisfying F (x) ⊆ Y \ B(i, n). Put

(2.1) Gn := {x ∈ X | ∃ F ∈ F : F (x) ⊆ Y \ B(i, n)}

for all n ∈ N. We claim that all the sets Gn (n ∈ N) are open and dense in X .
Indeed, let n be any positive integer, and let x0 be any point in Gn. According

to (2.1) there exists a mapping F ∈ F such that F (x0) ⊆ Y \B(i, n). Taking into
consideration that F is upper semicontinuous at x0 and that Y \ B(i, n) is open,
it follows that there exists a neighbourhood V of x0 such that F (x) ⊆ Y \B(i, n)
for all x ∈ V . Hence V ⊆ Gn. Therefore x0 is an interior point of Gn. Since x0
was arbitrary in Gn, we can conclude that the set Gn is open.
Suppose now that there is a positive integer n for which Gn is not dense in X .

Then X \ cl Gn is open and nonempty. The choice of i ensures that there exist a
point x ∈ X \ cl Gn and a mapping F ∈ F such that F (x) ⊆ Y \ B(i, n). But, in
view of (2.1), we have x ∈ Gn ⊆ cl Gn, which is a contradiction.
Consequently, all the sets Gn (n ∈ N) are open and dense, as claimed. Since

⋂

n∈N

Gn ⊆ SF (B),

if follows that SF (B) is a residual set.
The assertions 2◦ and 3◦ are immediate consequences of Proposition 2.4 and

Proposition 2.6 in [3]. �

3. Singularities and equicontinuity of families of generalized convex

set-valued mappings

Assume that A is a subset of the open interval ]0, 1[ having 0 as a cluster point,
and that s is a positive real number. Let X and Y be topological linear spaces,
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and let M be a nonempty convex subset of X . According to W. W. Breckner [4]
a mapping F :M → P0(Y ) is said to be (A, s)-convex if

(1 − a)sF (x) + asF (y) ⊆ F ((1− a)x+ ay)

whenever a ∈ A and x, y ∈ M .
Let X and Y be topological linear spaces, let oX and oY denote the zero-

elements of X and Y , respectively, let M be a nonempty subset of X , and let F
be a family of mappings from M to P0(Y ).
We say that F is bounded at a point x0 ∈ M if there exists a family {yF | F ∈

F} with yF ∈ F (x0) (F ∈ F) which is bounded, i.e. for every neighbourhood V
of oY one can find a positive integer n such that {yF | F ∈ F} ⊆ nV . If F is
bounded at each point of M , then we say that F is pointwise bounded (on M).
Any point in M at which F is not bounded is called a singularity of F . The set
of all singularities of F will be denoted by SF . If the set M is balanced, then we
call a point x0 ∈ M a weak singularity of F if F is not bounded either at x0 or at
−x0. The set of all weak singularities of F will be denoted by WSF . Obviously
WSF = SF ∪ (−SF ) holds. The concept of weak singularity has already been
introduced in [5].
We say that F is equi-lower semicontinuous (respectively equi-upper semicon-

tinuous) at a point x0 ∈ M if for every neighbourhood V of oY there exists a
neighbourhood U of x0 such that

F (x0) ⊆ F (x) + V (respectively F (x) ⊆ F (x0) + V )

for all F ∈ F and all x ∈ U ∩ M . We say that F is equicontinuous at x0 if it is
both equi-lower semicontinuous and equi-upper semicontinuous at this point.

Proposition 3.1. Let X and Y be topological linear spaces, let B be a neigh-
bourhood base at oY composed of closed sets, and let B : B × N → 2Y be the
mapping defined by

B(V, n) := nV for all (V, n) ∈ B × N.

Further let F be a family of (A, s)-convex mappings from a set M ∈ Oac(X) to
P0(Y ), and let G := F ∪ {GF | F ∈ F}, where GF :M → P0(Y ) is the mapping
defined by GF (x) := F (−x) (F ∈ F). Then the following assertions are true:

1◦ if all mappings in F are upper semicontinuous on M , then all mappings in
G are upper semicontinuous on M , too;

2◦ F is bounded at a point x0 ∈ M if and only if F is B-bounded at x0;

3◦ WSF = SG(B);

4◦ if F is bounded and equi-lower semicontinuous at oX , then G is uniformly
B-bounded on M ;
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5◦ if G is uniformly B-bounded on M , and

1

λ
F (oX ) ⊆ F (oX) ⊆ λF (oX ) for all F ∈ F and all λ ∈ ]0, 1],

then F is equicontinuous at oX .

Proof: The assertions 1◦, 2◦ and 3◦ are obvious.
4◦ Let V be any closed neighbourhood of oY . Choose a balanced neighbourhood

V0 of oY such that V0+V0 ⊆ V . Since F is bounded at oX , there exists a bounded
family {xF | F ∈ F} with xF ∈ F (oX ) (F ∈ F). Therefore one can find a positive
integer n so that

{xF | F ∈ F} ⊆ nV0.

On the other hand, taking into consideration that F is equi-lower semicontinuous
at oX , we can select a balanced neighbourhood U of oX such that

F (oX) ⊆ F (x) + nV0 for all F ∈ F and all x ∈ U ∩ M.

Put M0 := int (U ∩M). Then M0 is a nonempty open subset of M . Let x be any
point in M0. For every F ∈ F we have

xF ∈ F (oX ) ⊆ F (x) + nV0 and xF ∈ F (oX ) ⊆ F (−x) + nV0.

Therefore, for every F ∈ F we can select elements yF ∈ F (x) and zF ∈ F (−x) =
GF (x) such that xF ∈ yF + nV0 and xF ∈ zF + nV0. Consequently

yF ∈ xF − nV0 ⊆ nV0 + nV0 ⊆ nV

and
zF ∈ xF − nV0 ⊆ nV0 + nV0 ⊆ nV.

Hence
{yF | F ∈ F} ∪ {zF | F ∈ F} ⊆ nV = B(V, n).

Since x was arbitrary in M0, we can conclude that G is uniformly B-bounded
on M .
5◦ Let V be any neighbourhood of oY . Select a balanced neighbourhood V0 of

oY such that V0+V0 ⊆ V and a closed neighbourhoodW of oY such thatW ⊆ V0.
Since the family G is uniformly B-bounded on M , there exist a positive integer
n and a nonempty open subset M0 of M satisfying the following condition: for
each point x ∈ M0 one can select the families {yF | F ∈ F} and {zF | F ∈ F}
with yF ∈ F (x), zF ∈ F (−x) (F ∈ F) such that

(3.1) {yF | F ∈ F} ∪ {zF | F ∈ F} ⊆ nW.

Let x0 be any point in M0. The choice of M0 ensures that −x0 ∈ M0. Since M0
is open, we can find a balanced neighbourhood U of oX such that x0 + U ⊆ M0
and −x0+U ⊆ M0. Finally, choose a ∈ A so that asn/2s < 1, and put U0 := aU .
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Let x be an arbitrary point in U . From the equality

ax =
a

2
(x0 + x) +

a

2
(−x0 + x) + (1− a)oX ,

we get

(a

2

)s
F (x0 + x) +

(a

2

)s
F (−x0 + x) + (1− a)sF (oX ) ⊆ F (ax)

for all F ∈ F . Taking into account that

F (oX ) ⊆ (1− a)sF (oX ) (F ∈ F),

we obtain

(3.2)
(a

2

)s
F (x0 + x) +

(a

2

)s
F (−x0 + x) + F (oX ) ⊆ F (ax)

for all F ∈ F . But x0 + x and −x0 + x are points in M0. Therefore there
exist families {yF | F ∈ F} and {zF | F ∈ F} such that yF ∈ F (x0 + x),
zF ∈ F (−x0 + x) (F ∈ F) and which satisfy (3.1).
Let F be any mapping in F . Taking into account (3.2) we get

(a

2

)s
yF +

(a

2

)s
zF + F (oX ) ⊆ F (ax).

Consequently

F (oX ) ⊆ F (ax)−
(a

2

)s
yF −

(a

2

)s
zF ⊆

⊆ F (ax)−
(a

2

)s
nW −

(a

2

)s
nW ⊆

⊆ F (ax)−
(a

2

)s
nV0 −

(a

2

)s
nV0 ⊆ F (ax) + V0 + V0 ⊆

⊆ F (ax) + V.

Hence we have proved that

F (oX ) ⊆ F (x) + V for all F ∈ F and all x ∈ U0.

Since V was an arbitrary neighbourhood of oY , we can conclude that F is equi-
lower semicontinuous at oX .
Let again x be any point in U . From the equality

oX =
a

2(1 + a)
(x0 − x) +

a

2(1 + a)
(−x0 − x) +

1

1 + a
(ax),
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we get
(a

2

)s
F (x0 − x) +

(a

2

)s
F (−x0 − x) + F (ax) ⊆ (1 + a)sF (oX )

for all F ∈ F . Taking into account that

(1 + a)sF (oX ) ⊆ F (oX ) (F ∈ F),

we obtain

(3.3)
(a

2

)s
F (x0 − x) +

(a

2

)s
F (−x0 − x) + F (ax) ⊆ F (oX)

for all F ∈ F . But x0 − x and −x0 − x are points in M0. Therefore there exist
families {y′F | F ∈ F} and {z′F | F ∈ F} such that y′F ∈ F (x0 − x), z′F ∈
F (−x0 − x) (F ∈ F) and

(3.4) {y′F | F ∈ F} ∪ {z′F | F ∈ F} ⊆ nW.

Let F be any mapping in F . From (3.3) we obtain
(a

2

)s
y′F +

(a

2

)s
z′F + F (ax) ⊆ F (oX ).

Taking now into account relation (3.4) we get

F (ax) ⊆ F (oX )−
(a

2

)s
y′F −

(a

2

)s
z′F ⊆

⊆ F (oX )−
(a

2

)s
nW −

(a

2

)s
nW ⊆

⊆ F (oX )−
(a

2

)s
nV0 −

(a

2

)s
nV0 ⊆ F (oX ) + V0 + V0 ⊆

⊆ F (oX ) + V.

Hence we have proved that

F (x) ⊆ F (oX ) + V for all F ∈ F and all x ∈ U0.

Since V was an arbitrary neighbourhood of oY , we can conclude that F is equi-
upper semicontinuous at oX . Consequently, F is equicontinuous at oX .

�

Theorem 3.2. Let X and Y be topological linear spaces, and let F be a family of
upper semicontinuous (A, s)-convex mappings from a set M ∈ Oac(X) to P0(Y )
which is not equicontinuous at oX and satisfies the condition

1

λ
F (oX ) ⊆ F (oX) ⊆ λF (oX ) for all F ∈ F and all λ ∈ ]0, 1].

Then the following assertions are true:

1◦ WSF is residual in M ;

2◦ if in addition X is of second category, then WSF is of second category in

M and hence nonempty;

3◦ if in addition X is of second category and satisfies the separation axiom T1,
then WSF is of second category in M and uncountable.

Proof: Follows immediately from Theorem 2.1 and Proposition 3.1. �
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Remark. The assertion 1◦ of Theorem 3.2 does not remain true if we replace
the set WSF by SF . This is shown by the following example. Let A := ]0, 1[,
and let s := 1. For each positive integer n, define the function fn : R → R by

fn(x) :=

{

0 if x < 0

nx if x ≥ 0,

and then define the mapping Fn : R → P0(R) by Fn(x) := [fn(x),∞[. Obviously,
the family F := {Fn | n ∈ N} satisfies the conditions of Theorem 3.2. Nevertheless
SF is not residual because SF = ]0,∞[.

Theorem 3.3. Let X be a topological linear space of second category, let Y be a
topological linear space, and let F be a pointwise bounded family of upper semi-
continuous (A, s)-convex mappings from a set M ∈ Oac(X) to P0(Y ) satisfying
the condition

1

λ
F (oX ) ⊆ F (oX) ⊆ λF (oX ) for all F ∈ F and all λ ∈ ]0, 1].

Then F is equicontinuous at oX .

Proof: Follows immediately from Theorem 3.2. �

4. Singularities and equicontinuity of families of generalized convex

real-valued functions

Let X be a linear space, and letM be a nonempty convex subset of X . Assume
that A is a subset of ]0, 1[ having 0 as a cluster point, and that s is a positive real
number. Having in mind the definitions of the s-convex and rationally s-convex
functions given by W.W. Breckner [2], we say that a function f : M → R is
(A, s)-convex if

f((1 − a)x+ ay) ≤ (1 − a)sf(x) + asf(y)

whenever a ∈ A and x, y ∈ M .
It is easily seen that if f : M → R is an (A, s)-convex function, then the

mapping F :M → P0(R) defined by F (x) := [f(x),∞[ is (A, s)-convex, too.
Let X and Y be topological linear spaces, let oX and oY be the zero-elements

of X and Y , respectively, letM be a nonempty subset of X , and let F be a family
of mappings from M into Y .
If x0 is a point in M , then F is said to be:

(i) equicontinuous at x0 if for every neighbourhood V of oY there exists a
neighbourhood U of x0 such that

{f(x)− f(x0) | f ∈ F} ⊆ V for every x ∈ U ∩ M ;
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(ii) bounded at x0 if the set {f(x0) | f ∈ F} is bounded, i.e. for every neigh-
bourhood V of oY there exists a positive integer n such that

{f(x0) | f ∈ F} ⊆ nV.

If F is equicontinuous (respectively bounded) at each point of M , then F is
called equicontinuous (respectively pointwise bounded) on M .
Any point in M at which F is not bounded is said to be a singularity of F .

The set of all singularities of F is denoted by SF .
If M is balanced, then we say that a point x0 ∈ M is a weak singularity of F

if the set
{f(x0) | f ∈ F} ∪ {f(−x0) | f ∈ F}

is unbounded.
The set of all weak singularities of F is denoted by WSF . Obviously, WSF =

SF ∪ (−SF) holds.
The next theorem is an improvement of Theorem 3.1 in [5].

Theorem 4.1. Let X be a topological linear space, and let F be a family of
lower semicontinuous (A, s)-convex functions from a set M ∈ Oac(X) to R which

is not equicontinuous at oX . If either s ∈ ]0, 1[, or s = 1 and F is bounded at oX ,

then the following assertions are true:

1◦ WSF is residual in M ;
2◦ if in addition X is of second category, then WSF is of second category in

M and hence nonempty;

3◦ if in addition X is of second category and satisfies the separation axiom T1,
then WSF is of second category in M and uncountable.

Proof: Construct a new family G := {Gf | f ∈ F} of set-valued mappings,
where Gf :M → P0(R) is defined by

Gf (x) :=

{

[f(x),∞[ if s ∈ ]0, 1[

[f(x)− f(oX ),∞[ if s = 1.

It is immediately seen that G is a family of upper semicontinuous (A, s)-convex
mappings from M to P0(R) which is not equicontinuous at oX and satisfies the
condition

1

λ
G(oX ) ⊆ G(oX ) ⊆ λG(oX ) for all G ∈ G and all λ ∈ ]0, 1].

On the other hand, it is clear that F is bounded at a point x0 ∈ M if and only
if G is bounded at x0. Hence WSF = WSG . Therefore, the assertions of the
theorem are consequences of Theorem 3.2. �
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Theorem 4.2. Let X be a topological linear space of second category, let s ∈
]0, 1], and let F be a pointwise bounded family of lower semicontinuous (A, s)-
convex functions from a set M ∈ Oac(X) to R. Then F is equicontinuous on
M .

Proof: Let x0 be any point in M . We choose a balanced neighbourhood U
of x0 such that x0 + U ⊆ M . Then M0 := int (convU) lies in Oac(X) and
satisfies x0 + M0 ⊆ M . To each f ∈ F we assign the function gf : M0 → R

defined by gf (x) := f(x0 + x). Obviously, all the functions gf (f ∈ F) are
lower semicontinuous and (A, s)-convex. Moreover, the family G := {gf | f ∈ F}
is bounded on M0. Therefore, in view of Theorem 4.1, the family G must be
equicontinuous at oX . In other words, F must be equicontinuous at x0. �

5. Singularities and uniform boundedness of families of closed convex

processes

Let X and Y be normed linear spaces. In the sequel we shall denote by BX(r)
(respectively by BY (r)) the closed ball centered at oX (respectively at oY ) and
of radius r. The balls BX(1) and BY (1) will be simply denoted by BX and BY ,
respectively.
A mapping F : X → 2Y is called a convex process if the following conditions

are satisfied:

(i) oY ∈ F (oX);
(ii) F (λx) = λF (x) for all x ∈ X and all λ ∈ ]0,∞[;
(iii) F (x1) + F (x2) ⊆ F (x1 + x2) for all x1, x2 ∈ X .

The norm ‖F‖ of a convex process F is defined by

‖F‖ := sup
x∈Dom(F )∩BX

inf
y∈F (x)

‖y‖.

The mapping F is called a closed convex process if it is a convex process whose
graph is closed.

Proposition 5.1. Let X and Y be normed linear spaces, and let F be a family of
convex processes from X to P0(Y ). Then the following assertions are equivalent:

1◦ F is equicontinuous at oX ;

2◦ there exists a real number k such that ‖F‖ ≤ k for all F ∈ F .

Proof: 1◦ ⇒ 2◦ Since F is equicontinuous at oX , there exists a positive real
number r such that

F (oX ) ⊆ F (x) +BY for all F ∈ F and all x ∈ BX(r).

We shall prove that

(5.1) ‖F‖ ≤
1

r
for all F ∈ F .
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Let F be any mapping in F , and let x be any point in BX . Because of ‖rx‖ ≤ r,
we have

F (oX ) ⊆ F (rx) +BY = rF (x) +BY .

Since oY ∈ F (oX ), we can choose the points y0 ∈ F (x) and z0 ∈ BY such that
ry0 + z0 = oY . Hence ‖y0‖ = 1/r‖z0‖ ≤ 1/r. Therefore we have

inf
y∈F (x)

‖y‖ ≤
1

r
.

Since x was arbitrarily chosen in BX , we can conclude that ‖F‖ ≤ 1/r. Conse-
quently (5.1) holds.

2◦ ⇒ 1◦ Let V be any neighbourhood of oY . We choose a positive real number

r such that BY (r) ⊆ V . Put α := k+1
r and U := 1αBX . We shall prove that

(5.2) F (oX ) ⊆ F (x) + V and F (x) ⊆ F (oX ) + V

whenever F ∈ F and x ∈ U .
Let F be any mapping in F , and let x be any point in U . Then αx ∈ BX .

Since ‖F‖ ≤ k, we can find a point y0 ∈ F (αx) such that ‖y0‖ ≤ k + 1. Hence
we can find a point z0 ∈ F (x) ∩ BY (r) such that y0 = αz0. Then

z0 + F (oX) ⊆ F (x) + F (oX ) ⊆ F (x).

Consequently

F (oX ) ⊆ F (x) − z0 ⊆ F (x) +BY (r) ⊆ F (x) + V.

On the other hand, we have −αx ∈ BX . Hence we can find a point y′0 ∈
F (−αx) such that ‖y′0‖ ≤ k+1. Therefore we can find a point z′0 ∈ F (−x)∩BY (r)
such that y′0 = αz′0. We have

z′0 + F (x) ⊆ F (−x) + F (x) ⊆ F (oX).

Hence
F (x) ⊆ F (oX )− z′0 ⊆ F (oX ) +BY (r) ⊆ F (oX) + V.

Consequently (5.2) holds as claimed. Therefore F is equicontinuous at oX . �

Theorem 5.2. Let X be a Banach space, let Y be a normed linear space, and
let F be a family of closed convex processes from X to P0(Y ) such that

sup {‖F‖ | F ∈ F} =∞.

Then WSF is an uncountable residual subset of X .

Proof: For every F ∈ F define the function fF : X → R by

fF (x) := inf
y∈F (x)

‖y‖.
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Since F is a closed convex process, it is easily seen that fF is a sublinear lower
semicontinuous function. Put G := {fF | F ∈ F}. Obviously G is bounded at oX

because fF (oX ) = 0 for all F ∈ F .
Suppose that G is equicontinuous at oX . Then we can find a positive real

number δ such that fF (x) < 1 for all x ∈ BX (δ) and all F ∈ F . Choose F0 ∈ F
such that ‖F0‖ > 2/δ. Then we can find a point x∗0 ∈ BX such that

inf
y∈F0(x∗

0
)
‖y‖ >

2

δ
.

Therefore we have ‖y‖ > 2/δ for all y ∈ F0(x
∗
0). Put x0 := δx∗0. Then x0 ∈ BX (δ)

and ‖y‖ > 2 for all y ∈ F0(x0). Hence fF0(x0) ≥ 2, which is a contradiction.
Summing up, we conclude that the family G is not equicontinuous at oX .
Since WSF = WSG , the conclusion of the theorem follows immediately from

Theorem 4.1. �

The next result is Theorem 2.3.1 in [1].

Theorem 5.3. Let X be a Banach space, let Y be a normed linear space, and
let F be a pointwise bounded family of closed convex processes from X to P0(Y ).
Then

sup {‖F‖ | F ∈ F} < ∞.

Proof: Follows immediately from Theorem 5.2. �

The following theorem is similar to Theorem 5.3, but upper semicontinuous
convex processes are considered instead of closed convex ones.

Theorem 5.4. Let X be a Banach space, let Y be a normed linear space, and
let F be a pointwise bounded family of upper semicontinuous convex processes
from X to P0(Y ). Then

sup {‖F‖ | F ∈ F} < ∞.

Proof: Follows immediately from Theorem 3.3 and Proposition 5.1. �
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(1983), 101–111.



Singularities of certain families of set-valued mappings 365

[4] Breckner W.W., Continuity of generalized convex and generalized concave set-valued func-
tions, Rev. Anal. Numér. Théor. Approx. 22 (1993), 39–51.
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