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On some fan-tightness type properties

J. Valuyeva

Abstract. Properties similar to countable fan-tightness are introduced and compared to
countable tightness and countable fan-tightness. These properties are also investigated
with respect to function spaces and certain classes of continuous mappings.
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In this paper, all spaces are assumed to be Hausdorff. We denote by R the
set of real numbers; βX denotes the Stone-Čech compactification of a Tychonoff
space X and Cp(X) stands for the space of all real-valued continuous functions
on X with the topology of pointwise convergence. A basic open neighborhood
of a function f ∈ Cp(X) is of the form W (x1, . . . , xk; f ; ǫ) = {g ∈ Cp(X) :
|f(xi) − g(xi)| < ǫ, i = 1, 2, . . . , k}, where k ∈ ω, xi ∈ X and ǫ > 0. We denote
by C0p (X) the set of all bounded continuous functions on X equipped with the
topology of pointwise convergence. A cover γ of X is said to be an ω-cover if
for any finite subset F of X there is a G ∈ γ such that F ⊆ G. The notion of
countable fan-tightness was introduced in [1]: a space X is said to have countable
fan-tightness (denoted vet(X) ≤ ω) if for each point x in X and any countable
family {An}n∈ω of subsets of X satisfying x ∈

⋂

{An : n ∈ ω}, there exist finite

sets Hn ⊆ An such that x ∈
⋃

{Hn : n ∈ ω}. A space X is said to have countable
strong fan-tightness if for each x ∈ X and for each countable family {An : n ∈ ω}
of subsets of X such that x ∈

⋂

{An : n ∈ ω}, there exist ai ∈ Ai such that

x ∈ {ai : i ∈ ω}.
A spaceX is said to have property vet∗(X) ≤ ω if for each point x in X and any

countable family {An}n∈ω of subsets of X satisfying x ∈
⋂

{An : n ∈ ω}, there

exist sets Hn ⊆ An with |Hn| ≤ n such that x ∈
⋃

{Hn : n ∈ ω}. Clearly, every
space X of countable strong fan-tightness has vet∗(X) ≤ ω, and vet∗(X) ≤ ω in
turn implies that the fan-tightness of X is countable.
The following theorems were proved in [1] and [5], respectively:

Theorem 1 (Arhangelskii). For a Tychonoff space X , the following are equiva-
lent:

(a) vet Cp(X) ≤ ω;
(b) for each n ∈ ω, Xn is a Hurewicz space.
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Theorem 2 (Sakai). For a Tychonoff space X , the following are equivalent:

(a) Cp(X) has countable strong fan-tightness;
(b) for each sequence {γn : n ∈ ω} of open ω-covers of X there exist Un ∈ γn

such that {Un : n ∈ ω} is an ω-cover of X .

Lemma 3. For a topological space X , the following are equivalent:

(a) vet∗(X) ≤ ω;
(b) for each mapping φ : ω → ω such that φ(n) ≥ n for each n ∈ ω, for
each point x ∈ X and for each (decreasing) family {An}n∈ω of subsets
of X satisfying x ∈

⋂

{An : n ∈ ω}, there exist Hi ⊆ Ai such that

x ∈ {Hn : n ∈ ω} and |Hn| ≤ φ(n);
(c) for each point x ∈ X and for each decreasing family {An}n∈ω of subsets
of X satisfying x ∈

⋂

{An : n ∈ ω}, there exist ai ∈ Ai such that

x ∈ {an : n ∈ ω}.

Proof: (a) ⇒ (b) is trivial.
(b) ⇒ (c). Assume (b) and fix x ∈ X and a decreasing family {An}n∈ω of

subsets of X such that x ∈
⋂

{An : n ∈ ω}. Consider the subset {nk : k ∈ ω}
of ω defined as follows: n1 = 1 and nk = nk−1 + φ(k). Since x ∈ Ank

for each

k, select Hk ⊆ Ank
with |Hk| ≤ φ(k) and x ∈

⋃

{Hn : n ∈ ω}. Without loss

of generality it may be assumed that Hk = {xk
1 , x

k
2 , . . . , xk

φ(k)}. For i ∈ ω such

that nk−1 < i ≤ nk, put ai = xk
i−nk−1

. Clearly, ai ∈ Ai and x ∈ {ai : i ∈ ω} =
⋃

{Hn : n ∈ ω}.
(c) ⇒ (a). Assume (c) and fix {Bn}n∈ω with x ∈

⋂

{Bn : n ∈ ω}. Put
Ai =

⋃

{Bk : k ≥ i}. The family {Ai : i ∈ ω} satisfies (c); select ai ∈ Ai with

x ∈ {an : n ∈ ω} and put Hi = Bi ∩ {an : 1 ≤ n ≤ i}. Clearly, |Hi| ≤ i and

x ∈
⋃

{Hn : n ∈ ω}. �

Proposition 4. Let X be a Fréchet space of countable fan-tightness. Then
vet∗(X) ≤ ω.

Proof: Fix a decreasing sequence {An : n ∈ ω} of subsets of X and a point
x ∈ X such that x ∈

⋂

{An \ An : n ∈ ω}. There exist finite sets Hn ⊆ An

with x ∈
⋃

{Hn : n ∈ ω}. Choose a sequence {an : n ∈ ω} ⊆
⋃

{Hn : n ∈ ω}
converging to x and define a countable subset of A1 as follows: for each i ∈ ω, put
ki = max{n : an ∈ Hi} if {an}n∈ω∩Hi 6= ∅ and put bi = aki

, if {an}n∈ω∩Hi 6= ∅
and bi = bi+1 otherwise. Since each Hi is finite, the sequence {bi}i∈ω is well-
defined and bi ∈ Ai for each i. Since {bi}i∈ω contains a subsequence of {an}n∈ω,

we have x ∈ {bi : i ∈ ω} and therefore vet∗(X) ≤ ω. �

Theorem 5. Let X be a Tychonoff space. Then the following are equivalent:

(a) vet∗Cp(X) ≤ ω;
(b) for every sequence {γn : n ∈ ω} of open ω-covers of X there exist λn ⊆ γn

such that |λn| ≤ n and
⋃

{λn : n ∈ ω} is an ω-cover of X .
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Proof: Assume (a). Fix a sequence {γn : n ∈ ω} of open ω-covers of X and for
each natural number n put An = {f ∈ Cp(X) : ∃U ∈ γn such that f(X \ U) =

{0}}. Put f∗(x) = 1 for each x ∈ X . Clearly, f∗ ∈ An for each n. Choose

Hn ⊆ An such that f∗ ∈
⋃

{Hn : n ∈ ω} and |Hn| ≤ n. For each n and for each
f ∈ Hn fix Uf ∈ γn such that f(X \ Uf ) = {0} and put λn = {Uf : f ∈ Hn}.
To show that

⋃

{λn : n ∈ ω} is an ω-cover of X , fix x1, . . . , xk ∈ X . There
exist n ∈ ω and f ∈ Hn such that f ∈ W (x1, . . . , xk; f∗; 1/2). Thus for each

i = 1, . . . , k we have f(xi) >
1
2 and xi ∈ Uf .

Assume (b) and fix f ∈ Cp(X) and a sequence {An}n∈ω of subsets of X such

that f ∈
⋂

{An : n ∈ ω}. Put γn = {(g − f)−1(− 1n , 1n) : g ∈ An}. To show that

γn is an ω-cover of X , fix x1, . . . , xk ∈ X . Since W (x1, . . . , xk; f ; 1n ) ∩ An 6= ∅,

there exists g ∈ An such that xi ∈ (g − f)−1(− 1n , 1n) for each i = 1, . . . , k.
Case 1. There exists a subsequence {nk}k∈ω such that X ∈ γnk

for each k.

Fix gnk
∈ Ank

such that X = (gnk
− f)−1(− 1

nk
, 1nk
). It is easy to see that

f ∈ {gnk
: k ∈ ω}.

Case 2. X is an element of finitely many members of {γn}. Without loss of
generality we may assume that X /∈ γn for each n. Choose λn ⊆ γn with |λn| ≤ n

and for each U ∈ λn, fix gU ∈ An with U = (gU − f)−1(− 1n , 1n ). Put Hn =

{gU : U ∈ λn}. Fix a basic open neighborhood W (x1, . . . , xk; f ; 1n ) of f . Since
X /∈

⋃

{λn : n ∈ ω}, |{U ∈
⋃

{λn : n ∈ ω} : xi ∈ U , for each i = 1, . . . , k}| = ω

and there exists N ≥ n such that for some U ∈ λN , xi ∈ (gU − f)−1(− 1N , 1N )

for all i. Hence gU ∈ W (x1, . . . , xk; f ; 1n ) ∩ HN and f ∈
⋃

{Hn : n ∈ ω}. This
completes the proof. �

Question 1. Does vet∗(X) ≤ ω imply that X has countable strong fan-tightness?
In particular, are these two properties equivalent for function spaces (equivalently,
are condition (b) of Theorem 2 and condition (b) of Theorem 5 equivalent)?
Corollary 6. Condition (b) of Theorem 5 is preserved by t-equivalence.

Remark. It can be shown that a space X satisfies condition (b) of Theorem 5 if

and only if for each finite power Xk of X and for each sequence {γn : n ∈ ω} of
open covers of Xk there exist λn ⊆ γn such that |λn| ≤ n and

⋃

{λn : n ∈ ω}
is a cover of Xk. It can also be shown that every Tychonoff space X satisfying
condition (b) of Theorem 5 is zero-dimensional.

Example 7. Countable fan-tightness does not imply that vet∗(X) ≤ ω: Consider
X = Cp(0, 1), where (0, 1) is the open unit interval. By Arhangelskii’s theorem,
vet Cp(0, 1) ≤ ω. It is easy to see, however, that the sequence {γn} of open
covers of (0, 1), where γn = {

⋃

{(ai, bi) : 1 ≤ i ≤ k} : k ∈ ω, ai, bi ∈ (0, 1), and
∑k

i=1(bi − ai) < 1
n3n }, does not admit the choice of λn ⊆ γn satisfying condition

(b) of Theorem 5 and, therefore, vet∗Cp(0, 1) 6≤ ω.

Denote by Sc the space obtained by identifying the limit points of continuum
many convergent sequences.
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Theorem 8. Let X be a topological space such that t(Sc × X) ≤ ω. Then
vet∗(X) ≤ ω.

Proof: Enumerate the convergent sequences of Sc by the elements of R: Sc =
{Cα : α ∈ R} ∪ {O}, where Cα = {α

n : n ∈ ω} and O is the only non-isolated
point of Sc.

Fix x∗ ∈ X and a countable family {An : n ∈ ω} of subsets of X such that
x∗ ∈

⋂

{An : n ∈ ω}. Since t(X) ≤ t(Sc × X) = ω, we may assume without loss
of generality that |An| = ω.

Consider K = {(ai)i∈ω : ai ∈ Ai ∀ i ∈ ω}. Since |K| = 2ω, K = {ξα : α ∈ R},
where each ξα = (a

α
i )i∈ω and ξα 6= ξα′ whenever α 6= α′.

For each α ∈ R, put ζα = {(αn , aα
n) : n ∈ ω}. Let B =

⋃

{ζα : α ∈ R} ⊆ Sc×X .

Claim 1: B ∋ (O, x∗). Fix a neighborhood Ox∗ of x∗ in X and a neighborhood
V of O in Sc. For each n ∈ ω there exists an a∗n ∈ Ox∗ ∩ An. Also, there is a
real number α∗ such that ξα∗ = (a∗i )i∈ω . Since V contains all but finitely many
points of Cα∗ , ζα∗ ∩ (V × Ox∗) 6= ∅.
Choose a countable subset M of B such that M ∋ (O, x∗). Without loss of

generality, it may be assumed that M =
⋃

{ζαk
: k ∈ ω}. Put Hi = {aαk

i : 1 ≤
k ≤ i}. Clearly, each Hi is a subset of Ai and |Hi| ≤ i.

Claim 2: x∗ ∈
⋃

{Hi : i ∈ ω}. Fix a neighborhood Ox∗ of x∗ in X . Put
V = Sc \ {αk

n : k ∈ ω, n ∈ ω, n < k}. Clearly, V is an open neighborhood of
O, and, consequently, M ∩ (V × Ox∗) 6= ∅. Fix natural numbers k and n such
that (αk

n , aαk
n ) ∈ (V × Ox∗) ∩ M . Since αk

n ∈ V , we have n ≥ k and, therefore,

aαk
n ∈ Hn ∩ Ox∗ . This completes the proof. �

The following two corollaries provide answers to questions posed in [3]:

Corollary 9. Let X be a Hausdorff space such that t(Sc × X) ≤ ω. Then
vet (X) ≤ ω.

Remark. Example 7 shows that the last corollary cannot be reversed: It follows
from theorem (on product) that t(Cp(0, 1) × Sc) > ω. In fact, it follows from
Example 2 in [6] that t(Cp(0, 1)× Sc) ≥ 2

ω.

Question 2. Can Theorem 8 be reversed? Also, is it true that for a space X of
countable strong fan-tightness we have t(Sc × X) ≤ ω?

Corollary 10. Let X be a Tychonoff space such that t(Cp(X)× Sc) ≤ ω. Then
X is a Hurewicz space.

It was shown in [3] that for a regular countably compact space X of countable
tightness, the tightness of the product space Sc × X is countable. It was also
proved that for a regular countably compact space, countable fan-tightness and
countable tightness are equivalent. The following corollary improves the last
result:
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Corollary 11. Let X be a regular countably compact space of countable tight-
ness. Then vet∗(X) ≤ ω.

Question 3. Let X be a regular pseudocompact space of countable tightness. Is
it true that t(Sc × X) ≤ ω? In particular, is it true that vet∗(X) ≤ ω?

Definition. A mapping f : X → Y is said to be countably biquotient, if for each
point y ∈ Y and for each increasing open cover {Un : n ∈ ω} of f−1(y) there is a
number n such that y ∈ Int(f(Un)).

Proposition 12. Let X be a space such that vet∗(X) ≤ ω and let f : X → Y
be a continuous countably biquotient mapping onto Y . Then vet∗(Y ) ≤ ω.

Proof: Use condition (c) of Lemma 3. Fix y ∈ Y and a countable decreasing
family {An}n∈ω of subsets of Y such that y ∈

⋂

An. Put Bn = f−1(An).
There is a point x ∈ f−1(y) such that x ∈

⋂

{Bn : n ∈ ω}. Indeed, otherwise
{X \Bn : n ∈ ω} be an increasing cover of f−1(y) and for some n, we would have

y = f(x) ∈ Int(f(X \ f−1(An))) ⊆ Y \ An, a contradiction to y ∈ An.
Fix x ∈ f−1(y) such that x ∈ Bn for each n and choose bi ∈ Bi with the

property x ∈ {bi : i ∈ ω}. It is easy to see that f(bi) ∈ Ai and y ∈ {f(bi) : i ∈ ω}.
By Lemma 3, vet∗(Y ) ≤ ω. �

Corollary 13. If X is a topological space such that vet∗(X) ≤ ω and Y is an
image of X under a continuous open mapping, then vet∗(Y ) ≤ ω.

We shall say that a space X has countable omega-fan-tightness (vetω(X) ≤ ω)
if for each point x ∈ X and any countable family {An}n∈ω of countable subsets
of X satisfying x ∈

⋂

{An : n ∈ ω}, there exist finite sets Hn ⊆ An such that

x ∈
⋃

{Hn : n ∈ ω}.

Theorem 14. Let X be a Tychonoff space such that for every finite k and for ev-
ery sequence {γn}n∈ω of countable open covers of Xk there exist finite subfamilies

λn ⊆ γn such that
⋃

{λn : n ∈ ω} is a cover of Xk. Then vetωCp(X) ≤ ω.

Proof: Fix a family {An : n ∈ ω} of countable subsets of Cp(X) and a function

f ∈ Cp(X) such that f ∈
⋂

An. Fix natural numbers n and k and for each

g ∈ Ak, put Vn(g) = (g − f)−1(− 1n , 1n ). Put γn
k = {Vn(g)

n : g ∈ Ak}. The family
γn
k is an open cover of Xn. Indeed, for (x1, x2, . . . , xn) ∈ Xn there is h ∈ Ak

such that h ∈ W (x1, x2, . . . , xn; f ;
1
n) and hence (x1, x2, . . . , xn) ∈ Vn(h)

n.
Consider a sequence {γn

k : k ≥ n} of open countable covers of Xn and select
finite families λn

k = {Vn(g) : g ∈ Hn
k } ⊆ γn

k , where Hn
k is a finite subset of An

and
⋃

{λn
k : k ≥ n} ⊇ X . Put Hi =

⋃

{Hn
i : n ≤ i}. Clearly, Hi is a finite subset

of Ai.

Claim: f ∈
⋃

{Hi : i ∈ ω}. Fix x1, x2, . . . , xn ∈ X and ǫ > 0. It may be

assumed without loss of generality that 1n < ǫ. For some natural number k ≥
n, we have

⋃

λn
k ∋ (x1, x2, . . . , xn) and there is an h ∈ Hn

k ⊆ Hk such that



420 J.Valuyeva

(x1, x2, . . . , xn) ∈ Vn(h)
n, i.e. h ∈ W (x1, x2, . . . , xn; f ; ǫ) ∩ Hk. The proof is

complete. �

The following two theorems were proved by Professor Arhangelskii, who kindly
permitted me to include them in this paper.

Theorem 15. Let X be a Tychonoff pseudocompact space. Then vetωCp(X) ≤
ω.

Proof: The restriction mapping r : Cp(βX)→ Cp(X) is a continuous bijection.
Fix a countable subset A ⊆ Cp(X). Then the restriction of the inverse mapping

r−1|A : A → Cp(βX) is continuous. Indeed, for each z ∈ βX \ X the set F =
⋂

{g̃−1(g(z)) : g ∈ A}, where g̃ is an extension of function g to a continuous
function on βX , is a Gδ-set in βX and, therefore, there exists a yz ∈ X ∩ F ,
i.e. g(z) = g(yz) for each g ∈ A. From here, r(W (z, r−1(f), ǫ) ∩ r−1(A)) =
W (yz , f, ǫ) ∩ A for any f ∈ A. Clearly, for each x ∈ X and each f ∈ A we have
r(W (x, r−1(f), ǫ) ∩ r−1(A)) =W (x, f, ǫ) ∩ A.
Fix f ∈ Cp(X) and a sequence {An}n∈ω of subsets of Cp(X) such that f ∈

⋃

An. Then r−1(f) ∈
⋂

r−1(An) and by Arhangelskii’s Theorem, vet(Cp(βX)) ≤

ω. Fix finite Hn ⊆ r−1(An) such that r−1(f) ∈
⋃

{Hn : n ∈ ω}. It follows that

f ∈
⋃

{r(Hn) : n ∈ ω} and each r(Hn) is a finite subset of An. �

Remark. The last theorem shows that Theorem 14 cannot be reversed: a pseu-
docompact Tychonoff space not satisfying the assumptions of Theorem 14 would
be a counterexample.

It is known that countable fan-tightness is preserved by continuous open surjec-
tive mappings. The next theorem shows that it is not true for countable omega-
fan-tightness.

Theorem 16. Let Y be a Tychonoff space. Then there exist a Tychonoff space
X with vetω(X) ≤ ω and a continuous open surjection f : X → Y .

Proof: Consider the space Z =
(

(ω1 + 1) × β(Cp(Y ))
)

\
(

{ω1} × (β(Cp(Y )) \

Cp(Y ))
)

. Since Z contains a dense countably compact space ω1 × β(Cp(Y )),
the space Z is pseudocompact, and therefore vetω(Cp(Z)) ≤ ω. It is easy to
see that {ω1} × Cp(Y ) is closed in Z and every bounded continuous function on
{ω1}×Cp(Y ) can be extended to a continuous function on Z. Thus the restriction
mapping r : Cp(Z) → Cp({ω1} × Cp(Y )) = Cp(Cp(Y )) is an open mapping; a

topological copy of Y is contained in C0p (Cp(Y )) ⊆ r(Cp(Z)). Put X = r−1(Y )

and put f = r|X . It is easy to see that f is a continuous open mapping onto Y
and vetω(X) ≤ ω. �

Remark. After this paper had been submitted, the author proved independently
from S. Garcia-Ferreira and A. Tamariz-Mascarua that for a Tychonoff space X ,
vet∗Cp(X) ≤ ω implies that Cp(X) has countable strong fan-tightness. In the
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article “Some generalizations of rapid ultrafilters in topology and id-fan tight-
ness”, Tsukuba J. Math, 19 (1) (1995), 173–185, the two authors also showed that
vet∗(X) ≤ ω does not imply in general that X has countable strong fan-tightness.
This provides a complete answer to Question 1. It is not clear, however, whether
the two properties coincide for topological groups.
Also, A. Bella noticed that the answer to Question 2 is negative.
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