On the cardinality of Hausdorff spaces

Alessandro Fedeli

Abstract. The aim of this paper is to show, using the reflection principle, three new cardinal inequalities. These results improve some well-known bounds on the cardinality of Hausdorff spaces.

Keywords: cardinal inequality, Hausdorff space Classification: 54A25

Two of the most known inequalities in the theory of cardinal functions are the Hajnal-Juhàsz's inequality [7]: "For $X \in T_2$, $|X| \leq 2^{c(X)\chi(X)}$ " and the Arhangel'skii's inequality [5]: "For $X \in T_2$, $|X| \leq 2^{L(X)t(X)\psi(X)}$ ".

In this paper we will use the language of elementary submodels (see [4], [10], [1] and [2]) to establish three new cardinal inequalities which generalize the results mentioned above. We refer the reader to [3], [5], [7] for notations and terminology not explicitly given. χ , c, ψ , t, L and π_{χ} denote character, cellularity, pseudocharacter, tightness, Lindelöf degree and π -character respectively.

Definitions. (i) Let X be a Hausdorff space.

The closed pseudocharacter of X, denoted $\psi_c(X)$, is the smallest infinite cardinal κ such that for every $x \in X$ there is a collection \mathcal{U}_x of open neighbourhoods of x such that $\bigcap \{\overline{U} : U \in \mathcal{U}_x\} = \{x\}$ and $|\mathcal{U}_x| \leq \kappa$ ([7]).

The Hausdorff pseudocharacter of X, denoted $H\psi(X)$, is the smallest infinite cardinal κ such that for every $x \in X$ there is a collection \mathcal{U}_x of open neighbourhoods of x with $|\mathcal{U}_x| \leq \kappa$ such that if $x \neq y$, there exist $U \in \mathcal{U}_x$, $V \in \mathcal{U}_y$ with $U \cap V = \emptyset$ ([6]).

Clearly $\psi_c(X) \leq H\psi(X) \leq \chi(X)$ for every Hausdorff space X.

(ii) Let X be a topological space, ac(X) is the smallest infinite cardinal κ such that there is a subset S of X such that $|S| \leq 2^{\kappa}$ and for every open collection \mathcal{U} in X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ with $\bigcup \mathcal{U} \subset S \cup \bigcup \{\overline{\mathcal{V}} : V \in \mathcal{V}\}$.

Observe that $ac(X) \leq c(X)$ for every space X.

Theorem 1. If X is a T_2 -space then $|X| \leq 2^{ac(X)H\psi(X)}$.

PROOF: Let $\lambda = ac(X)H\psi(X)$, $\kappa = 2^{\lambda}$, let τ be the topology on X and let S be an element of $[X]^{\leq \kappa}$ witnessing that $ac(X) \leq \lambda$. For every $x \in X$ let \mathcal{B}_x be a collection of open neighbourhoods of x with $|\mathcal{B}_x| \leq \lambda$ such that if $x \neq y$ then

there exist $U \in \mathcal{B}_x$, $V \in \mathcal{B}_y$ such that $U \cap V = \emptyset$, and let $f : X \to \mathcal{P}(\tau)$ be the map defined by $f(x) = \mathcal{B}_x$ for every $x \in X$.

Let $A = \kappa \cup \{S, X, \tau, \kappa, f\}$ and take a set \mathcal{M} such that $\mathcal{M} \supset A$, $|\mathcal{M}| = \kappa$ and which reflects enough formulas to carry out our argument. To be more precise we ask that \mathcal{M} reflects enough formulas so that the following conditions are satisfied:

- (i) $C \in \mathcal{M}$ for every $C \in [\mathcal{M}]^{\leq \kappa}$;
- (ii) $\mathcal{B}_x \in \mathcal{M}$ for every $x \in X \cap \mathcal{M}$;
- (iii) if $B \subset X$ and $B \in \mathcal{M}$ then $\overline{B} \in \mathcal{M}$;
- (iv) if $\mathcal{A} \in \mathcal{M}$ then $\bigcup \mathcal{A} \in \mathcal{M}$;
- (v) if B is a subset of X such that $X \cap \mathcal{M} \subset B$ and $B \in \mathcal{M}$ then X = B;
- (vi) if $E \in \mathcal{M}$ and $|E| \leq \kappa$ then $E \subset \mathcal{M}$.

Observe that by (ii) and (vi) $\mathcal{B}_y \subset \mathcal{M}$ for every $y \in X \cap \mathcal{M}$.

Claim: $X \subset \mathcal{M}$ (and hence $|X| \leq 2^{ac(X)H\psi(X)}$). Suppose not and take $p \in X \setminus \mathcal{M}$. Let $\mathcal{B}_p = \{B_\alpha\}_{\alpha < \lambda}$, clearly $\bigcap \{\overline{B}_\alpha : \alpha < \lambda\} = \{p\}$. Now for every $\alpha < \lambda$ let $(X \cap \mathcal{M})_\alpha = \{y \in X \cap \mathcal{M} : \exists B \in \mathcal{B}_y \text{ for which } B \cap B_\alpha = \emptyset\}$. For every $y \in (X \cap \mathcal{M})_\alpha$ choose a $B_{y,\alpha} \in \mathcal{B}_y$ such that $B_{y,\alpha} \cap B_\alpha = \emptyset$, clearly $\mathcal{U}_\alpha = \{B_{y,\alpha} : y \in (X \cap \mathcal{M})_\alpha\}$ covers $(X \cap \mathcal{M})_\alpha$. Since $ac(X) \leq \lambda$ it follows that there is a $\mathcal{V}_\alpha \in [\mathcal{U}_\alpha]^{\leq \lambda}$ such that $(X \cap \mathcal{M})_\alpha \subset S \cup \bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\}$. Observe that $p \notin S \cup \bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\}$ ($S \in \mathcal{M}$ and $|S| \leq \kappa$ so by (vi) $S \subset \mathcal{M}$, moreover $\bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \subset X \setminus B_\alpha$). We have also $\bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$ ($V \in \mathcal{M}$ for every $V \in \mathcal{V}_\alpha$, so by (iii) $\overline{V} \in \mathcal{M}$, therefore $\{\overline{V} : V \in \mathcal{V}_\alpha\} \subset \mathcal{M}$ and $\{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$ by (i), hence by (iv) $\bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$, so $\bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$ by (iii)). Set $C_\alpha = S \cup \bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$). Now $X \cap \mathcal{M} \subset \bigcup \{C_\alpha : \alpha < \lambda\} \in \mathcal{M}$ (recall that $S, \bigcup \{\overline{V} : V \in \mathcal{V}_\alpha\} \in \mathcal{M}$). Now $X \cap \mathcal{M} \subset \bigcup \{C_\alpha : \alpha < \lambda\} \in \mathcal{M}$, hence by (iv) $\bigcup \{C_\alpha : \alpha < \lambda\} \in \mathcal{M}$ it follows by (v) that $\bigcup \{C_\alpha : \alpha < \lambda\} = X$. This is a contradiction $(p \notin \bigcup \{C_\alpha : \alpha < \lambda\})$.

Corollary 2 ([7]). If X is a T₂-space then $|X| \leq 2^{c(X)\chi(X)}$.

Remark 3. The above result of Hajnal and Juhàsz has been improved also by Hodel, in fact in [6] it is shown that $|X| \leq 2^{c(X)H\psi(X)}$ for every Hausdorff space X. It is clear that Theorem 1 generalizes also this result of Hodel.

Now let X be the Michael line, i.e. let X be \mathbb{R} topologized by isolating the points of $\mathbb{R} \setminus \mathbb{Q}$ and leaving the points of \mathbb{Q} with their usual neighbourhoods. Then X is a normal space such that $|X| = 2^{ac(X)H\psi(X)} < 2^{c(X)H\psi(X)}$.

Observe that in Theorem 1 $H\psi(X)$ cannot be replaced by $\psi_c(X)$, in fact for every infinite cardinal κ there is a T_3 -space X with $|X| = \kappa$ and $\psi(X) = c(X) = ac(X) = \omega$ (see e.g. [5]).

Definition 4. Let X be a topological space, lc(X) is the smallest infinite cardinal κ such that there is a closed subset F of X such that $|F| \leq 2^{\kappa}$ and for every open collection \mathcal{U} in X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ with $\bigcup \mathcal{U} \subset F \cup \bigcup \{\overline{V} : V \in \mathcal{V}\}$.

Clearly $ac(X) \leq lc(X) \leq c(X)$ for every space X.

Theorem 5. If X is a Hausdorff space then $|X| \leq 2^{lc(X)\pi_{\chi}(X)\psi_c(X)}$.

PROOF: Let $\lambda = lc(X)\pi_{\chi}(X)\psi_c(X)$ and let $\kappa = 2^{\lambda}$, let τ be the topology on Xand let F be a closed subset of X with $|F| \leq \kappa$ and witnessing that $lc(X) \leq \lambda$. For every $x \in X$ let \mathcal{B}_x be a local π -base at x such that $|\mathcal{B}_x| \leq \lambda$, and let $f: X \to \mathcal{P}(\tau)$ be the map defined by $f(x) = \mathcal{B}_x$ for every $x \in X$. Let $A = \kappa \cup \{F, X, \tau, \kappa, f\}$ and take a set $\mathcal{M} \supset A$ such that $|\mathcal{M}| = \kappa$ and which reflects enough formulas so that the conditions (i)-(vi) listed in Theorem 1 are satisfied.

Claim: $X \subset \mathcal{M}$ (and hence $|X| \leq 2^{lc(X)\pi_{\chi}(X)\psi_{c}(X)}$). Suppose not and take $p \in X \setminus \mathcal{M}$. Let $\{G_{\alpha} : \alpha \in \lambda\}$ be a family of open neighbourhoods of p such that $\bigcap \{\overline{G}_{\alpha} : \alpha \in \lambda\} = \{p\}$. Set $V_{\alpha} = X \setminus \overline{G}_{\alpha}$ and $S_{\alpha} = X \cap \mathcal{M} \cap V_{\alpha}$ for every $\alpha \in \lambda$. Now let $\mathcal{W}_{\alpha} = \{B : B \in \mathcal{B}_{y}, y \in S_{\alpha} \land B \subset V_{\alpha}\}$, since $lc(X) \leq \lambda$ it follows that there is a $\mathcal{V}_{\alpha} \in [\mathcal{W}_{\alpha}]^{\leq \lambda}$ such that $\bigcup \mathcal{W}_{\alpha} \subset F \cup \bigcup \{\overline{V} : V \in \mathcal{V}_{\alpha}\}$. Since $S_{\alpha} \subset \bigcup \mathcal{W}_{\alpha}$ (let $y \in S_{\alpha}$ and U be an open neighbourhood of $y, y \notin \overline{G}_{\alpha}$ so there is an open neighbourhood V of y such that $V \cap G_{\alpha} = \emptyset$, let $B \in \mathcal{B}_{y}$ such that $B \subset U \cap V, \emptyset \neq B \subset (\bigcup \mathcal{W}_{\alpha}) \cap U$ and $y \in \bigcup \mathcal{W}_{\alpha}$) it follows that $S_{\alpha} \subset F \cup \bigcup \{\overline{V} : V \in \mathcal{V}_{\alpha}\}$; moreover $\bigcup \{\overline{V} : V \in \mathcal{V}_{\alpha}\} \in \mathcal{M}$ and $p \notin F \cup \bigcup \{\overline{V} : V \in \mathcal{V}_{\alpha}\}$. Set $C_{\alpha} = \bigcup \{\overline{V} : V \in \mathcal{V}_{\alpha}\}$, since $X \cap \mathcal{M} \subset F \cup \bigcup \{C_{\alpha} : \alpha < \lambda\}$ and $F \cup \bigcup \{C_{\alpha} : \alpha < \lambda\}$ and $F \cup \bigcup \{C_{\alpha} : \alpha < \lambda\} \in \mathcal{M}$ it follows that $F \cup \bigcup \{C_{\alpha} : \alpha < \lambda\} = X$, a contradiction.

By Theorem 5 it follows again that $|X| \leq 2^{c(X)\chi(X)}$ for every T_2 -space X. Moreover we have the following

Corollary 6 ([6]). If X is a T₃-space then $|X| \leq 2^{c(X)\pi_{\chi}(X)\psi(X)}$.

Remark 7. A generalization of the inequality in corollary 6 has also been obtained by Sun in [8]: " $|X| \leq 2^{c(X)}\pi_{\chi}(X)\psi_{c}(X)$ for every Hausdorff space X". Note that even this result is a corollary of Theorem 5. Moreover if X is the Michael line then $|X| = 2^{lc(X)}\pi_{\chi}(X)\psi_{c}(X) < 2^{c(X)}\pi_{\chi}(X)\psi_{c}(X)$. Observe also that the π -character cannot be omitted in Theorem 5 (see the comment at the end of Remark 3).

Now let us turn our attention to the Arhangel'skii's inequality: "For $X \in T_2$, $|X| \leq 2^{L(X)t(X)\psi(X)}$ ".

Definitions. Let X be a topological space.

(i) ([8]) A subset A of X with $|A| \leq 2^{\kappa}$ is said to be κ -quasi-dense if for each open cover \mathcal{U} of X there exist a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ and a $B \in [A]^{\leq \kappa}$ such that $(\bigcup \mathcal{V}) \cup \overline{B} = X$; qL(X) is the smallest infinite cardinal κ such that X has a κ -quasi dense subset.

(ii) aqL(X) is the smallest infinite cardinal κ such that there is a subset S of X with $|S| \leq 2^{\kappa}$ such that for every open cover \mathcal{U} of X there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \kappa}$ with $X = S \cup (\bigcup \mathcal{V})$.

Clearly $aqL(X) \leq L(X)$ for every space X.

Theorem 8. If X is a Hausdorff space then $|X| \leq 2^{aqL(X)t(X)\psi_c(X)}$.

PROOF: Let $\lambda = aqL(X)t(X)\psi_c(X)$, $\kappa = 2^{\lambda}$, let τ be the topology on X and let S be an element of $[X]^{\leq \kappa}$ witnessing that $aqL(X) \leq \lambda$. For every $x \in X$ let \mathcal{B}_x be a family of open neighbourhoods of x with $|\mathcal{B}_x| \leq \lambda$ and $\bigcap \{\overline{B} : B \in \mathcal{B}_x\} = \{x\}$, and let $f : X \to \mathcal{P}(\tau)$ be the map defined by $f(x) = \mathcal{B}_x$ for every $x \in X$. Let $A = \kappa \cup \{S, X, \tau, \kappa, f\}$ and take a set $\mathcal{M} \supset A$ such that $|\mathcal{M}| = \kappa$ and which reflects enough formulas so that the conditions (i)–(vi) listed in Theorem 1 are satisfied. First observe that $X \cap \mathcal{M}$ is a closed subset of X, although this fact follows from a general result which can be found in [4] we give a proof of it for the sake of completeness: let $x \in \overline{X \cap \mathcal{M}}$, since $t(X) \leq \lambda$ there is a $C \in [X \cap \mathcal{M}]^{\leq \lambda}$ such that $x \in \overline{C}$. Since $C \in \mathcal{M}$ (by (i)), it follows that $\overline{C} \in \mathcal{M}$ (by (iii)). Now it remains to observe that $|\overline{C}| \leq \kappa$ (recall that $t(X)\psi_c(X) \leq \lambda$) and hence by (vi) $x \in \overline{C} \subset X \cap \mathcal{M}$.

We have done if we show that $X \subset \mathcal{M}$. Suppose there is a $p \in X \setminus \mathcal{M}$, for every $y \in X \cap \mathcal{M}$ let $B_y \in \mathcal{B}_y$ such that $p \notin B_y$. Since $\mathcal{U} = \{B_y : y \in X \cap \mathcal{M}\} \cup \{X \setminus \mathcal{M}\}$ is an open cover of X and $aqL(X) \leq \lambda$ there is a $\mathcal{V} \in [\mathcal{U}]^{\leq \lambda}$ such that $X = S \cup (\bigcup \mathcal{V})$. Let $\mathcal{W} = \{B_y : B_y \in \mathcal{V}\}$, since $X \cap \mathcal{M} \subset S \cup (\bigcup \mathcal{W})$ and $S \cup (\bigcup \mathcal{W}) \in \mathcal{M}$ it follows that $X = S \cup (\bigcup \mathcal{W})$, a contradiction $(p \notin S \cup (\bigcup \mathcal{W}))$.

A consequence of Theorem 8 is the following generalization of the Arhangel'skii's inequality.

Corollary 9 ([8]). If X is a Hausdorff space then $|X| \leq 2^{qL(X)t(X)\psi_c(X)}$.

PROOF: It is enough to note that $aqL(X) \le qL(X)t(X)\psi_c(X)$.

Remark 10. Let κ be an infinite cardinal number and let X be the discrete space of cardinality 2^{κ} . This space shows that Theorem 8 can give a better estimation than the one in Corollary 9.

References

- Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17–72.
- [2] Dow A., More set-theory for topologists, Topology Appl. 64 (1995), 243-300.
- [3] Engelking R., General Topology. Revised and completed edition, Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin, 1989.
- [4] Fedeli A., Watson S., Elementary submodels and cardinal functions, Topology Proc. 20 (1995), 91–110.
- [5] Hodel R.E., Cardinal Functions I, Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers, B.V., North Holland, 1984, pp. 1–61.
- [6] Hodel R.E., Combinatorial set theory and cardinal functions inequalities, Proc. Amer. Math. Soc. 111 (1991), 567–575.
- [7] Juhàsz I., Cardinal Functions in Topology ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980.
- [8] Sun S.H., Two new topological cardinal inequalities, Proc. Amer. Math. Soc. 104 (1988), 313–316.

- [9] Watson S., The construction of topological spaces: Planks and Resolutions, Recent Progress in General Topology, (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland, 1992, pp. 675–757.
- [10] Watson S., The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25–34.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF L'AQUILA, VIA VETOIO (LOC. COPPITO), 67100 L'AQUILA, ITALY

E-mail: fedeli@axscaq.aquila.infn.it

(Received September 11, 1997)