Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces

KRZYSZTOF FELEDZIAK

Abstract. Some class of locally solid topologies (called uniformly μ -continuous) on Köthe-Bochner spaces that are continuous with respect to some natural two-norm convergence are introduced and studied. A characterization of uniformly μ -continuous topologies in terms of some family of pseudonorms is given. The finest uniformly μ continuous topology $\mathcal{T}_{I}^{\varphi}(X)$ on the Orlicz-Bochner space $L^{\varphi}(X)$ is a generalized mixed topology in the sense of P. Turpin (see [11, Chapter I]).

Keywords: Orlicz spaces, Orlicz-Bochner spaces, Köthe-Bochner spaces, locally solid topologies, generalized mixed topologies, uniformly μ -continuous topologies, inductive limit topologies

Classification: 46E30, 46E40, 46A70

1. Preliminaries.

For notation and terminology concerning locally solid Riesz spaces we refer to [1].

Throughout the paper let (Ω, Σ, μ) be a complete σ -finite measure space and let L^0 denote the corresponding space of equivalence classes of all Σ -measurable real valued functions. Then L^0 is a super Dedekind complete Riesz space under the ordering $u_1 \leq u_2$ whenever $u_1(\omega) \leq u_2(\omega)$ μ -a.e. on Ω .

For $u \in L^0$ let us put

$$||u||_{\mu} = \inf\{\lambda > 0 : \mu(\{\omega \in \Omega : |u(\omega)| > \lambda\}) \le \lambda\}.$$

It is easy to see that a sequence (u_n) in L^0 is convergent to $u \in L^0$ in measure on Ω (in symbols $u_n \to u \ (\mu - \Omega)$) iff $||u_n - u||_{\mu} \to 0$. We will denote by \mathcal{T}_{μ} the topology on L^0 of $|| \cdot ||_{\mu}$.

For a subset A of Ω let χ_A stand for its characteristic function.

Let [x] denote the greatest integer which is less or equal to a real number x.

Let $(E, \|\cdot\|_E)$ be an *F*-normed function space, that is *E* is an ideal of L^0 with supp $E = \Omega$ and $\|\cdot\|_E$ is a complete Riesz *F*-norm. The Köthe dual E' of *E* is defined by

$$E' = \{ v \in L^0 : \int_{\Omega} |u(\omega)v(\omega)| \, d\mu < \infty \text{ for all } u \in E \}.$$

Supported by KBN grant: 2P03A 031 10.

In case $(E, \|\cdot\|_E)$ is a Banach function space the associated norm $\|\cdot\|_{E'}$ on E' can be defined for $v \in E'$ by

$$\|v\|_{E'} = \sup\Big\{\Big|\int_{\Omega} u(\omega)v(\omega)\,d\mu\Big|: u \in E, \ \|u\|_E \le 1\Big\}.$$

We will write $A_n \searrow \emptyset$ when (A_n) is a decreasing sequence in Σ such that $\mu(A_n \cap A) \to 0$ for every $A \in \Sigma$ with $\mu(A) < \infty$.

We denote by E_a the ideal of elements of absolutely continuous norm in E, i.e. $E_a = \{ u \in E : \|\chi_{A_n} u\|_E \to 0 \text{ as } A_n \searrow \emptyset \}.$

Let $(X, \|\cdot\|_X)$ be a real Banach space, and let S_X and B_X denote the unit sphere and the closed unit ball in X, respectively.

By $L^0(X)$ we will denote the linear space of equivalence classes of all strongly Σ -measurable functions $f: \Omega \to X$.

For $f \in L^0(X)$ let us put

$$\|f\|_{\mu}^{X} = \inf\{\lambda > 0 : \mu(\{\omega \in \Omega : \|f(\omega)\|_{X} > \lambda\}) \le \lambda\}.$$

We say that a sequence (f_n) in $L^0(X)$ is convergent to $f \in L^0(X)$ in measure on Ω (in symbols $f_n \to f(\mu - \Omega)$) whenever $\mu(\{\omega \in \Omega : ||f_n(\omega) - f(\omega)||_X > \varepsilon\}) \to 0$ for every $\varepsilon > 0$. It can be seen that a sequence (f_n) in $L^0(X)$ is convergent to $f \in L^0(X)$ in measure on Ω iff $||f_n - f||_{\mu}^X \to 0$. The topology on $L^0(X)$ of $\|\cdot\|_{\mu}^X$ will be denoted by $\mathcal{T}_{\mu}(X)$.

For $f \in L^0(X)$ let

$$f(\omega) := \|f(\omega)\|_X$$
 for $\omega \in \Omega$.

The linear space $E(X) = \{f \in L^0(X) : \tilde{f} \in E\}$ provided with the norm $||f||_{E(X)} := ||\tilde{f}||_E$ is called a Köthe-Bochner space (see [2], [3]).

Now we recall some concepts and terminology concerning locally solid topologies on vector-valued function spaces as set out in [3].

A subset H of E(X) is said to be *solid* whenever $||f_1(\omega)||_X \leq ||f_2(\omega)||_X \mu$ -a.e. and $f_1 \in E(X), f_2 \in H$ imply $f_1 \in H$.

A pseudonorm ρ on E(X) is said to be *solid* whenever for $f_1, f_2 \in E(X)$, $\|f_1(\omega)\|_X \leq \|f_2(\omega)\|_X$ μ -a.e. imply $\rho(f_1) \leq \rho(f_2)$.

A linear topology τ on E(X) is said to be *locally solid* if it has a basis for neighbourhoods of zero consisting of solid sets.

A linear topology τ on E(X) that is at the same time locally solid and locally convex will be called a *locally convex-solid topology* on E(X).

Theorem 1.1 (see [3, Theorem 2.2, Theorem 2.3]). For a linear topology τ on E(X) the following statements are equivalent:

- (i) τ is a locally solid topology (respectively τ is a locally convex-solid topology);
- (ii) τ is generated by some family of solid pseudonorms (respectively seminorms).

Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces 455

Now we are going to explain the relationship between locally solid topologies on E and E(X) (see [3]).

Let p be a Riesz pseudonorm (respectively seminorm) on E, and let

$$\overline{p}(f) := p(f) \text{ for } f \in E(X).$$

Then \overline{p} is a solid pseudonorm (respectively seminorm) on E(X).

Next, fix $x \in S_X$. Given $u \in E$ let us put $\overline{u}(\omega) := u(\omega) \cdot x$ for $\omega \in \Omega$. Then $\overline{u} \in L^0(X)$ and $\|\overline{u}(\omega)\|_X = |u(\omega)|$ for $\omega \in \Omega$, so $\overline{u} \in E(X)$.

Let ρ be a solid pseudonorm (respectively seminorm) on E(X), and let

$$\widetilde{\rho}(u) := \rho(\overline{u}) \text{ for } u \in E.$$

Then $\tilde{\rho}$ is a Riesz pseudonorm (respectively seminorm) on E.

Theorem 1.2 (see [3, Lemma 3.1]). (i) If ρ is a solid pseudonorm on E(X), then $\overline{\rho}(f) = \rho(f)$ for $f \in E(X)$.

(ii) If p is a Riesz pseudonorm on E, then

$$\overline{p}(u) = p(u)$$
 for $u \in E$.

Let τ be a locally solid topology on E(X) generated by some family $\{\rho_{\alpha} : \alpha \in \{\alpha\}\}$ of solid pseudonorms defined on E(X). By $\tilde{\tau}$ we will denote the locally solid topology on E generated by the family $\{\tilde{\rho}_{\alpha} : \alpha \in \{\alpha\}\}$ of Riesz pseudonorms on E. If τ is a Hausdorff topology, then so is $\tilde{\tau}$.

In turn, let ξ be a locally solid topology on E generated by some family $\{p_{\alpha} : \alpha \in \{\alpha\}\}$ of Riesz pseudonorms on E. By $\overline{\xi}$ we will denote the locally solid topology on E(X) generated by the family $\{\overline{p}_{\alpha} : \alpha \in \{\alpha\}\}$ of solid pseudonorms on E(X). Then $\overline{\xi}$ is a Hausdorff topology, whenever ξ is Hausdorff.

Theorem 1.3 (see [3, Theorem 3.2]). (i) For a locally solid topology τ on E(X) we have: $\overline{\tau} = \tau$.

(ii) For a locally solid topology ξ on E we have: $\tilde{\xi} = \xi$.

Now we recall some notation and terminology concerning Orlicz spaces (see [5], [6], [11] for more details).

By an Orlicz function we mean a function $\varphi : [0, \infty) \to [0, \infty]$ which is nondecreasing, left continuous, continuous at 0 with $\varphi(0) = 0$ and not identically equal to 0.

A convex Orlicz function is usually called a Young function. For a Young function φ we denote by φ^* the function complementary to φ in the sense of Young, i.e.

$$\varphi^*(s) = \sup\{ts - \varphi(t) : t \ge 0\} \text{ for } s \ge 0.$$

Let φ and ψ be a pair of Orlicz functions vanishing only at zero (respectively taking only finite values). We say that φ increases essentially more rapidly than ψ

for small t (respectively for large t) denoted $\psi \stackrel{s}{\prec} \varphi$ (respectively $\psi \stackrel{l}{\prec} \varphi$), whenever for any c > 0, $\psi(ct)/\varphi(t) \to 0$ as $t \to 0$ (respectively $t \to \infty$). We will write $\psi \prec \varphi$ when $\psi \stackrel{s}{\prec} \varphi$ and $\psi \stackrel{l}{\prec} \varphi$ hold. For φ and ψ being Young functions the condition $\psi \stackrel{s}{\prec} \varphi$ (respectively $\psi \stackrel{l}{\prec} \varphi$) implies $\varphi^* \stackrel{s}{\prec} \psi^*$ (respectively $\varphi^* \stackrel{l}{\prec} \psi^*$) (see [5, Lemma 13.1]).

An Orlicz function φ determines a functional $m_{\varphi}: L^0 \to [0, \infty]$ by

$$m_{\varphi}(u) = \int_{\Omega} \varphi(|u(\omega)|) \, d\mu$$

The Orlicz space generated by φ is the ideal of L^0 defined by

$$L^{\varphi} = \{ u \in L^0 : m_{\varphi}(\lambda u) < \infty \text{ for some } \lambda > 0 \}.$$

 L^{φ} can be equipped with the complete metrizable topology \mathcal{T}_{φ} of the F-norm

$$||u||_{\varphi} = \inf \left\{ \lambda > 0 : m_{\varphi} \left(\frac{u}{\lambda} \right) \le \lambda \right\}.$$

Let

$$\varphi_0(t) = \begin{cases} 0 & \text{for } 0 \le t \le 1\\ 1 & \text{for } t > 1. \end{cases}$$

It is known that L^{φ_0} is the largest Orlicz space and consists of all those $u \in L^0$ that are bounded outside of some set of finite measure and $||u||_{\varphi_0} = ||u||_{\mu}$ for all $u \in L^{\varphi_0}$. (see [11, 0.3.4]).

Moreover one can check that L^{φ_0} is the largest linear subspace of L^0 such that the functional $\|\cdot\|_{\mu}$ restricted to L^{φ_0} is an *F*-norm.

We will write $\| \cdot \|_{\mu}$ and \mathcal{T}_{μ} instead of $\| \cdot \|_{\varphi_0}$ and \mathcal{T}_{φ_0} , respectively.

Moreover, if φ is a Young function, then the topology \mathcal{T}_{φ} can be generated by the Luxemburg norm:

$$|||u|||_{\varphi} = \inf \left\{ \lambda > 0 : m_{\varphi} \left(\frac{u}{\lambda} \right) \le 1 \right\}.$$

For an Orlicz function φ let

$$E^{\varphi} = \{ u \in L^0 : m_{\varphi}(\lambda u) < \infty \text{ for all } \lambda > 0 \}$$

and

$$L_a^{\varphi} = \{ u \in L^{\varphi} : \|u_{A_n}\|_{\varphi} \to 0 \text{ as } A_n \searrow \emptyset \}$$

It is well known that $E^{\varphi} = L_a^{\varphi}$ whenever φ takes only finite values. Moreover, for every Young function φ the identity $(L^{\varphi})' = L^{\varphi^*}$ holds.

Let $M_{\varphi}: L^0(X) \to [0,\infty]$ be defined by

$$M_{\varphi}(f) = \int_{\Omega} \varphi(\|f(\omega)\|_X) \, d\mu.$$

Thus $M_{\varphi}(f) = m_{\varphi}(\tilde{f})$. The Köthe-Bochner space

$$L^{\varphi}(X) = \{ f \in L^{0}(X) : \tilde{f} \in L^{\varphi} \}$$
$$= \{ f \in L^{0}(X) : M_{\varphi}(\lambda f) < \infty \text{ for some } \lambda > 0 \}$$

is usually called an Orlicz-Bochner space and is equipped with the F-norm

$$|f||_{L^{\varphi}(X)} = \|\widetilde{f}\|_{\varphi} \text{ for } f \in L^{\varphi}(X).$$

We will denote by $\mathcal{T}_{\varphi}(X)$ the topology on $L^{\varphi}(X)$ generated by the *F*-norm $\|\cdot\|_{L^{\varphi}(X)}$. Moreover, if φ is a Young function, then $\mathcal{T}_{\varphi}(X)$ is generated by the Luxemburg norm: $\|\|f\|\|_{L^{\varphi}(X)} = \|\|\widetilde{f}\|\|_{\varphi}$ for $f \in L^{\varphi}(X)$. We will write $\|\cdot\|_{\mu}^{X}$ and $\mathcal{T}_{\mu}(X)$ instead of $\|\cdot\|_{L^{\varphi_0}(X)}$ and $\mathcal{T}_{\varphi_0}(X)$, respectively.

2. Uniformly μ -continuous topologies on Köthe-Bochner spaces

Definition 2.1. (i) A solid pseudonorm ρ on E(X) is said to be uniformly μ continuous, whenever $f_n \in E(X), f_n \to 0 \ (\mu - \Omega)$ with $\sup_n ||f_n||_{E(X)} < \infty$ imply $\rho(f_n) \to 0$.

(ii) A locally solid topology τ on E(X) is said to be uniformly μ -continuous whenever $f_n \in E(X), f_n \to 0 \ (\mu - \Omega)$ with $\sup_n \|f_n\|_{E(X)} < \infty$ imply $f_n \xrightarrow{\tau} 0$.

In view of [3, Theorem 2.3] a locally solid topology τ on E(X) is uniformly μ -continuous iff it is generated by some family $\{\rho_{\alpha} : \alpha \in \{\alpha\}\}$ of uniformly μ -continuous pseudonorms defined on E(X).

It is easy to prove the following lemma.

Lemma 2.1. (i) If ρ is a uniformly μ -continuous pseudonorm on E(X), then $\tilde{\rho}$ is a uniformly μ -continuous pseudonorm on E (i.e. $u_n \in E$ $u_n \to 0$ $(\mu - \Omega)$ with $\sup_n ||u_n||_E < \infty$ imply $\tilde{\rho}(u_n) \to 0$).

(ii) If p is a uniformly μ -continuous pseudonorm on E, then \overline{p} is a uniformly μ -continuous pseudonorm on E(X).

From Lemma 2.1 we easily get the following theorem that explains the relationship between uniformly μ -continuous topologies on E and E(X).

Theorem 2.2. (i) If τ is a uniformly μ -continuous topology on E(X), then $\tilde{\tau}$ is a uniformly μ -continuous topology on E.

(ii) If ξ is a uniformly μ -continuous topology on E, then $\overline{\xi}$ is a uniformly μ -continuous topology on E(X).

We shall need the following result.

Theorem 2.3. (i) If τ is the finest uniformly μ -continuous topology on E(X), then $\tilde{\tau}$ is the finest uniformly μ -continuous topology on E.

(ii) If ξ is the finest uniformly μ -continuous topology on E, then $\overline{\xi}$ is the finest uniformly μ -continuous topology on E(X).

PROOF: (i) Let ξ be a uniformly μ -continuous topology on E. By Theorem 2.2 $\overline{\xi}$ is a uniformly μ -continuous topology on E(X), so $\overline{\xi} \subset \tau$. By [3, Theorem 3.3] and Theorem 1.3 $\xi = \widetilde{\xi} \subset \widetilde{\tau}$, as desired.

(ii) Let τ be a uniformly μ -continuous topology on E(X). By Theorem 2.2 $\tilde{\tau}$ is a uniformly μ -continuous topology on E, so $\tilde{\tau} \subset \xi$. By [3, Theorem 3.3] and Theorem 1.3 $\tau = \overline{\tilde{\tau}} \subset \overline{\xi}$, as desired.

Now we are going to give a description of uniformly μ -continuous topologies on Orlicz-Bochner spaces. We start with the following definition.

Definition 2.2. A solid pseudonorm ρ on E(X) is said to be *uniformly summable* whenever the following conditions hold:

For every r > 0

(*)
$$\sup\{\rho(\chi_{A(f,\lambda)}f): f \in E(X), \|f\|_{E(X)} \le r\} \to 0 \text{ as } \lambda \to 0_+,$$

where $A(f, \lambda) = \{\omega \in \Omega : ||f(\omega)||_X \le \lambda \text{ or } ||f(\omega)||_X > \frac{1}{\lambda}\}$ for $0 < \lambda < 1$ and

(**)
$$\rho(\overline{\chi}_A) \to 0 \text{ as } \mu(A) \to 0.$$

Theorem 2.4. Let φ be an arbitrary Orlicz function and ψ be a finite valued Orlicz function such that $\psi \prec \varphi$. Then the *F*-norm $\|\cdot\|_{L^{\psi}(X)}$ (restricted to $L^{\varphi}(X)$) is uniformly summable on $L^{\varphi}(X)$.

PROOF: Since $\psi \prec \varphi$, so $L^{\varphi} \subset L^{\psi}$ (see [11, 0.2.5, 0.3.5]). Hence $L^{\varphi}(X) \subset L^{\psi}(X)$. Let r > 0, $\varepsilon > 0$ be given. Choose $\eta > 0$ such that $\eta(r+1) < \varepsilon$ and let $c = \frac{\varepsilon}{r+1}$. Then there exist $0 < t_1 < t_2$ such that $\psi(t) \leq \eta\varphi(ct)$ for $0 \leq t < t_1$ or $t > t_2$, and choose $\lambda_0 \in (0,1)$ such that $\lambda_0 \leq \varepsilon t_1$ and $\frac{1}{\lambda_0} > \varepsilon t_2$. Hence for $f \in L^{\varphi}(X)$ and $\|f\|_{L^{\varphi}(X)} \leq r$ we have:

$$\begin{split} M_{\psi}\Big(\frac{\chi_{A(f,\lambda)}f}{\varepsilon}\Big) &= \int_{A(f,\lambda)} \psi\Big(\frac{\|f(\omega)\|_{X}}{\varepsilon}\Big) \, d\mu \leq \int_{A(f,\lambda)} \eta\varphi\Big(c\frac{\|f(\omega)\|_{X}}{\varepsilon}\Big) \, d\mu \\ &\leq \int_{\Omega} \eta\varphi\Big(\frac{\|f(\omega)\|_{X}}{r+1}\Big) \, d\mu \leq \eta(r+1) < \varepsilon \end{split}$$

for every $0 < \lambda \leq \lambda_0$. It follows that $\|\chi_{A(f,\lambda)}f\|_{L^{\psi}(X)} \leq \varepsilon$ for every $f \in L^{\varphi}(X), \|f\|_{L^{\varphi}(X)} \leq r$ and $0 < \lambda \leq \lambda_0$. This means that for r > 0

$$\sup\{\|\chi_{A(f,\lambda)}f\|_{L^{\psi}(X)}: f \in L^{\varphi}(X), \ \|f\|_{L^{\varphi}(X)} \le r\} \to 0 \ \text{ as } \ \lambda \to 0_+.$$

Now, choose $\delta > 0$ such that $0 < \delta < \frac{\varepsilon}{\psi(\frac{1}{\varepsilon})}$. Then $M_{\psi}\left(\frac{\overline{\chi}_{A}}{\varepsilon}\right) = \int_{A} \psi(\frac{1}{\varepsilon}) d\mu = \mu(A) \cdot \psi(\frac{1}{\varepsilon}) \le \delta \cdot \psi(\frac{1}{\varepsilon}) < \varepsilon$ for every $A \in \Sigma$ with $\mu(A) \le \delta$. Hence $\|\overline{\chi}_{A}\|_{L^{\psi}(X)} \to 0$ as $\mu(A) \to 0$, and the proof is finished. \Box

Remark 2.1. Let φ be an Orlicz function such that $\varphi(u) \to \infty$ as $u \to \infty$. Then $\varphi_0 \prec \varphi$ and it follows that the *F*-norm $\|\cdot\|_{\mu}^X$ is uniformly summable on $L^{\varphi}(X)$.

Theorem 2.5. Let φ be an Orlicz function such that $\varphi(u) \to \infty$ as $u \to \infty$. For a solid pseudonorm ρ on $L^{\varphi}(X)$ the following statements are equivalent:

- (i) ρ is uniformly summable;
- (ii) ρ is uniformly μ -continuous.

PROOF: (i) \Rightarrow (ii) Take a sequence (f_n) in $L^{\varphi}(X)$ such that $f_n \to 0$ $(\mu - \Omega)$ and $\sup_n \|f_n\|_{L^{\varphi}(X)} \leq r$ for some r > 0. Fix $\varepsilon > 0$. There exists $\lambda_0 \in (0, 1)$ such that $\sup_n \rho(\chi_{A(f_n,\lambda_0)}f_n) < \frac{\varepsilon}{2}$. Moreover, there exists $\delta > 0$ such that

$$\rho(\overline{\chi}_A) < \frac{\varepsilon}{2\left(\left[\frac{1}{\lambda_0}\right] + 1\right)} \quad \text{whenever} \quad A \in \Sigma \quad \text{with} \quad \mu(A) \le \delta.$$

Since $f_n \to 0 \ (\mu - \Omega)$, we can find a natural number k such that for all $n \ge k$

$$\mu(\Omega \setminus A(f_n, \lambda_0)) \le \mu(\{\omega \in \Omega : \|f_n(\omega)\|_X > \lambda_0\}) \le \delta$$

Hence for $n \ge k$

$$\rho(f_n) = \rho(\chi_{A(f_n,\lambda_0)}f_n + \chi_{\Omega \setminus A(f_n,\lambda_0)}f_n) \le \rho(\chi_{A(f_n,\lambda_0)}f_n) \\
+ \rho(\chi_{\Omega \setminus A(f_n,\lambda_0)}f_n) \\
\le \frac{\varepsilon}{2} + \rho\left(\left(\left[\frac{1}{\chi_0}\right] + 1\right)\overline{\chi}_{\Omega \setminus A(f_n,\lambda_0)}\right) \le \frac{\varepsilon}{2} + \left(\left[\frac{1}{\lambda_0}\right] + 1\right)\rho(\overline{\chi}_{\Omega \setminus A(f_n,\lambda_0)}) \\
\le \frac{\varepsilon}{2} + \left(\left[\frac{1}{\lambda_0}\right] + 1\right)\frac{\varepsilon}{2\left(\left[\frac{1}{\chi_0}\right] + 1\right)} \le \varepsilon.$$

Thus $\rho(f_n) \to 0$.

(ii) \Rightarrow (i) For r > 0 let $B_X^{\varphi}(r) = \{f \in L^{\varphi}(X) : \|f\|_{L^{\varphi}(X)} \le r\},\ B_X^{\rho}(r) = \{f \in L^{\varphi}(X) : \rho(f) \le r\},\ B_X^{\mu}(r) = \{f \in L^{\varphi_0}(X) : \|f\|_{\mu}^X \le r\}.$ By (ii) the identity map

$$id: (B_X^{\varphi}(r), \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(r)}) \to (B_X^{\varphi}(r), \tau(\rho)|_{B_X^{\varphi}(r)})$$

is continuous at zero for any r > 0, where $\tau(\rho)$ denotes the topology on $L^{\varphi}(X)$ generated by ρ . Let $\varepsilon > 0$, r > 0 be given. There exists $\eta > 0$ such that $B_X^{\mu}(\eta) \cap B_X^{\varphi}(r) \subset B_X^{\rho}(\varepsilon)$. Since $\|\cdot\|_{\mu}^X$ is uniformly summable on $L^{\varphi}(X)$ (see Remark 2.1) there exists $\lambda_0 \in (0, 1)$ such that

$$\sup\{\|\chi_{A(f,\lambda)}f\|_{\mu}^{X}: f \in L^{\varphi}(X), \|f\|_{L^{\varphi}(X)} \le r\} \le \eta \text{ whenever } 0 < \lambda \le \lambda_{0}.$$

Then $\sup\{\rho(\chi_{A(f,\lambda)}f): f \in L^{\varphi}(X), \|f\|_{L^{\varphi}(X)} \leq r\} \leq \varepsilon$ whenever $0 < \lambda \leq \lambda_0$. Hence $\sup\{\rho(\chi_{A(f,\lambda)}f): f \in L^{\varphi}(X), \|f\|_{L^{\varphi}(X)} \leq r\} \to 0 \text{ as } \lambda \to 0_+.$

Moreover, there exists $\delta > 0$ such that $\|\overline{\chi}_A\|_{\mu}^X \leq \eta$ for $A \in \Sigma$ with $\mu(A) \leq \delta$. Then $\rho(\overline{\chi}_A) \leq \varepsilon$ whenever $A \in \Sigma$ with $\mu(A) \leq \delta$. It follows that $\rho(\overline{\chi}_A) \to 0$ as $\mu(A) \to 0.$

Thus ρ is a uniformly summable pseudonorm on $L^{\varphi}(X)$.

Theorem 2.6. Let φ be an Orlicz function such that $\varphi(u) \to \infty$ as $u \to \infty$. For a locally solid topology τ on $L^{\varphi}(X)$ the following statements are equivalent:

(i) τ is uniformly μ -continuous;

(ii) $\tau|_{B_X^{\varphi}(r)} \subset \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(r)}$ for every r > 0;

(iii) τ is generated by some family of uniformly summable pseudonorms.

PROOF: (i) \Rightarrow (ii) Since $\mathcal{T}_{\mu}(X)$ is a linear metrizable topology, it follows from Definition 2.1 (ii).

(ii) \Rightarrow (i) Obvious.

(i) \Rightarrow (iii) Let τ be defined by the family { $\rho_{\alpha} : \alpha \in \{\alpha\}$ } of solid pseudonorms. Then by Definition 2.1 and Theorem 2.5 τ is generated by the family $\{\rho_{\alpha} : \alpha \in$ $\{\alpha\}\$ of uniformly summable pseudonorms.

(iii) \Rightarrow (i) It follows from Theorem 2.5.

3. Generalized mixed topologies on Orlicz-Bochner spaces

In this section we consider some kind of inductive limit topology on Orlicz-Bochner space $L^{\varphi}(X)$.

Let φ be an arbitrary Orlicz function, and let

$$F_n^X = B_X^{\varphi}(2^n)$$
 and $\mathcal{T}_n(X) = \mathcal{T}_{\mu}(X)|_{F_n^X}$ for $n \ge 0$.

It can be seen that the metric bounded sets F_n^X $(n \ge 0)$ are balanced subsets of $L^{\varphi}(X)$. Moreover, the sequence $(F_n^X, \mathcal{T}_n(X))$ $(n \ge 0)$ of balanced topological spaces satisfies the following conditions:

(i) $L^{\varphi}(X) = \bigcup_{n \ge 0} F_n^X$; (ii) $F_n^X + F_n^X \subset F_{n+1}^X$, and the function

$$F_n^X \times F_n^X \ni (f,g) \mapsto f + g \in F_{n+1}^X$$

is continuous $(n \ge 0)$;

(iii) the function
$$[-1,1] \times F_n^X \ni (\lambda, f) \mapsto \lambda \cdot f \in F_n^X$$
 is continuous $(n \ge 0)$;

(iv) $\mathcal{T}_{n+1}(X)|_{F_n^X} = \mathcal{T}_n(X)$ for $n \ge 0$.

Thus the space $L^{\varphi}(X)$ with the system $\{(F_n^X, \mathcal{T}_n(X)) : n \ge 0\}$ comes under the definition of the strict inductive limit of balanced topological spaces (in the sense of Turpin; see [11, Definition 1.1.1]).

Definition 3.1. Let φ be an Orlicz function and let (ε_n) be a sequence of positive numbers. The family of all sets of the form:

(*)
$$\bigcup_{N=0}^{\infty} \left(\sum_{n=0}^{N} B_{X}^{\varphi}(2^{n}) \cap B_{X}^{\mu}(\varepsilon_{n}) \right)$$

forms a base of neighbourhoods of zero for a linear topology $\mathcal{T}_{I}^{\varphi}(X)$ on $L^{\varphi}(X)$ that will be called *generalized mixed topology*. $\mathcal{T}_{I}^{\varphi}(X)$ is exactly the strict inductive limit topology of balanced topological spaces $\{(B_X^{\varphi}(2^n), \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(2^n)}) : n \geq 0\}$ in the sense of Turpin [11, Chapter I].

Using the solid decomposition property (see [3, Lemma 1.1]) it is easy to verify that the sets of the form (*) are solid, so $\mathcal{T}_{I}^{\varphi}(X)$ is locally solid.

According to [11, Theorem 1.1.6] $\mathcal{T}_{I}^{\varphi}(X)$ is the finest of all linear topologies τ on $L^{\varphi}(X)$, which satisfy the condition

(1)
$$\tau|_{B^{\varphi}_X(2^n)} \subset \mathcal{T}_{\mu}(X)|_{B^{\varphi}_X(2^n)} \text{ for } n \ge 0.$$

Moreover, in view of [11, Theorem 1.1.8] we have

(2)
$$\mathcal{T}_{I}^{\varphi}(X)|_{B_{X}^{\varphi}(2^{n})} = \mathcal{T}_{\mu}(X)|_{B_{X}^{\varphi}(2^{n})} \text{ for } n \geq 0.$$

Since $\mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)} \subset \mathcal{T}_{\varphi}(X)$ we have $\mathcal{T}_{I}^{\varphi}(X) \subset \mathcal{T}_{\varphi}(X)$; hence $\mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)} \subset \mathcal{T}_{I}^{\varphi}(X) \subset \mathcal{T}_{\varphi}(X)$.

Henceforth, we assume in this section that $\varphi(u) \to \infty$ as $u \to \infty$.

Theorem 3.1. The topology $\mathcal{T}_{I}^{\varphi}(X)$ is the finest uniformly μ -continuous topology on $L^{\varphi}(X)$.

PROOF: It follows from (1) and Theorem 2.6.

The generalized mixed topology $\mathcal{T}_{I}^{\varphi}$ on Orlicz spaces L^{φ} has been studied in [11], [8], [9], [10]. Now we will extend the study of the generalized mixed topology to the Orlicz-Bochner spaces.

Theorem 3.2. The space $(L^{\varphi}(X), \mathcal{T}_{I}^{\varphi}(X))$ is complete.

PROOF: First we show that the balls $B_X^{\varphi}(2^n)$ are closed subsets of $(L^{\varphi_0}(X), \mathcal{T}_{\mu}(X))$. Indeed, let (f_k) be a sequence in $B_X^{\varphi}(2^n)$ and let $f \in L^{\varphi_0}(X)$ be such that $f_k \to f$ for $\mathcal{T}_{\mu}(X)$. This means that $\mu(\{\omega \in \Omega : \|f_k(\omega) - f(\omega)\|_X > \varepsilon\}) \to 0$ for any $\varepsilon > 0$. Hence $\mu(\{\omega \in \Omega : \|f_k(\omega)\|_X - \|f(\omega)\|_X| > \varepsilon\}) \to 0$ for every $\varepsilon > 0$. Thus $\tilde{f}_k \to \tilde{f}$ for \mathcal{T}_{μ} in L^{φ_0} . It is known that the balls $B_{\varphi}(2^n)$ are closed subsets of $(L^{\varphi_0}, \mathcal{T}_{\mu})$ (see [11, 0.3.6]). But $\tilde{f}_k \in B_{\varphi}(2^n)$ $(k = 1, 2, ...), \tilde{f} \in L^{\varphi_0}$, so we get $\tilde{f} \in B_{\varphi}(2^n)$. It follows that $f \in B_X^{\varphi}(2^n)$.

Since the spaces $(B_X^{\varphi}(2^n), \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(2^n)})$ $(n \ge 0)$ are complete, by [11, Theorem 1.1.10] the space $(L^{\varphi}(X), \mathcal{T}_I^{\varphi}(X))$ is complete.

Theorem 3.3. For a subset $Z \subset L^{\varphi}(X)$ the following statements are equivalent:

- (i) $\sup\{\|f\|_{L^{\varphi}(X)} : f \in Z\} < \infty;$
- (ii) Z is bounded for $\mathcal{T}_{I}^{\varphi}(X)$.

PROOF: Observe that the balls $B_X^{\varphi}(2^n)$ are bounded subsets of $(L^{\varphi}(X), \mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)})$. In fact, fix an r > 0, let $f_n \in B_X^{\varphi}(r)$ (n = 1, 2, ...) and let $\lambda_n \to 0$. For $\varepsilon > 0$ let $\Omega_n(\varepsilon) = \{\omega \in \Omega : ||\lambda_n f_n(\omega)||_X > \varepsilon\}$. Then we have

$$\mu(\Omega_n(\varepsilon)) \cdot \varphi\Big(\frac{\varepsilon}{r|\lambda_n|}\Big) \le \int_{\Omega_n(\varepsilon)} \varphi\Big(\frac{\|f_n(\omega)\|_X}{r}\Big) \, d\mu \le M_\varphi\Big(\frac{f_n}{r}\Big) \le r.$$

Since $\varphi(u) \to \infty$ as $u \to \infty$ we get $\mu(\Omega_n(\varepsilon)) \to 0$ and this means that $\lambda_n f_n \to 0$ for $\mathcal{T}_{\mu}(X)$.

Moreover the balls $B_X^{\varphi}(2^n)$ are also closed in $(L^{\varphi}(X), \mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)})$. In view of (1) and (2) $\mathcal{T}_I^{\varphi}(X)$ is the finest of all linear topologies τ on $L^{\varphi}(X)$ such that $\tau|_{B_X^{\varphi}(2^n)} = \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(2^n)}$ (n = 0, 1, 2, ...). Hence by [11, Corollary 1.1.12] the equivalence (i) \Leftrightarrow (ii) holds.

Theorem 3.4. For a subset $Z \subset L^{\varphi}(X)$ the following statements are equivalent:

- (i) Z is relatively compact for $\mathcal{T}_{I}^{\varphi}(X)$;
- (ii) Z is relatively compact for $\mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)}$ and $\sup\{\|f\|_{L^{\varphi}(X)}: f \in Z\} < \infty.$

PROOF: follows from Theorem 3.3 and (2).

Definition 3.2. A sequence (f_n) in $L^{\varphi}(X)$ is said to be γ_{φ}^X -convergent to $f \in L^{\varphi}(X)$, in symbols $f_n \xrightarrow{\gamma_{\varphi}} f$, whenever

 $f_n \to f \ (\mu - \Omega)$ and $\sup_n \|f_n\|_{L^{\varphi}(X)} < \infty.$

Theorem 3.5. For a sequence (f_n) in $L^{\varphi}(X)$ the following statements are equivalent:

(i) $f_n \to 0$ for $\mathcal{T}_I^{\varphi}(X)$; (ii) $f_n \xrightarrow{\gamma_{\varphi}} 0$.

Moreover, $\mathcal{T}_{I}^{\varphi}(X)$ is the finest of all linear topologies τ on $L^{\varphi}(X)$ which satisfy the condition:

(+)
$$f_n \xrightarrow{\gamma_{\varphi}} 0$$
 implies $f_n \to 0$ for τ .

PROOF: The equivalence (i) \Leftrightarrow (ii) follows immediately from Theorem 3.3 and (2). Now let τ be a linear topology on $L^{\varphi}(X)$ for which the condition (+) holds. Then $\tau|_{B_X^{\varphi}(r)} \subset \mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(r)}$ for r > 0, because $\mathcal{T}_{\mu}(X)$ is a linear metrizable topology. Hence by (1) we get $\tau \subset \mathcal{T}_I^{\varphi}(X)$.

Definition 3.3. Let (Y, η) be a linear topological space. A linear mapping T: $L^{\varphi}(X) \to Y$ is said to be γ_{φ} -linear, whenever

$$f_n \xrightarrow{\gamma_{\varphi}} 0$$
 implies $T(f_n) \to 0$ for η .

Then following theorem gives a characterization of γ_{φ} -linear operators on $L^{\varphi}(X).$

Theorem 3.6. For a linear topological space (Y, η) and a linear mapping T: $L^{\varphi}(X) \to Y$ the following statements are equivalent:

- (i) T is $(\mathcal{T}_{I}^{\varphi}(X), \eta)$ -continuous;
- (ii) T is γ_{φ} -linear;
- (iii) for every r > 0, the restriction $T|_{B_X^{\varphi}(r)}$ is $(\mathcal{T}_{\mu}(X)|_{B_X^{\varphi}(r)}, \eta)$ -continuous.

PROOF: (i) \Rightarrow (ii) It follows from Theorem 3.5.

(ii) \Rightarrow (iii) Obvious.

(iii) \Rightarrow (i) Let W be a neighbourhood of zero in Y for η . Since η is a linear topology, there exists a sequence $(W_n : n \ge 0)$ of neighbourhoods of zero for η such that $\sum_{n=0}^{N} W_n \subset W$ for every $N \geq 0$. By (iii) we can find a sequence $(\varepsilon_n : n \geq 0)$ of positive numbers such that $T(B_X^{\varphi}(2^n) \cap B_X^{\mu}(\varepsilon_n)) \subset W_n$ for $n \geq 0$. Thus for $N \ge 0$ we have

$$T\left(\sum_{n=0}^{N} (B_X^{\varphi}(2^n) \cap B_X^{\mu}(\varepsilon_n))\right) \subset \sum_{n=0}^{N} W_n \subset W,$$

 \mathbf{SO}

$$T\Big(\bigcup_{N=0}^{\infty}\Big(\sum_{n=0}^{N}(B_{X}^{\varphi}(2^{n})\cap B_{X}^{\mu}(\varepsilon_{n}))\Big)\Big)\subset \bigcup_{N=0}^{\infty}T\Big(\sum_{n=0}^{N}(B_{X}^{\varphi}(2^{n})\cap B_{X}^{\mu}(\varepsilon_{n}))\Big)\subset W.$$

follows that T is $(\mathcal{T}_{t}^{\varphi}(X),\eta)$ -continuous.

It follows that T is $(\mathcal{T}_{I}^{\varphi}(X), \eta)$ -continuous.

Theorem 3.7. Assume that (Ω, Σ, μ) is an atomless measure space or that μ is the counting measure on N. If $(L^{\varphi}(X), \mathcal{T}_{\varphi}(X))$ is a locally bounded space then for a subset Z of $L^{\varphi}(X)$ the following statements are equivalent:

- (i) Z is bounded for $\mathcal{T}_{I}^{\varphi}(X)$;
- (ii) $\sup\{\|f\|_{L^{\varphi}(X)} : f \in Z\} < \infty;$
- (iii) Z is bounded for $\mathcal{T}_{\omega}(X)$.

PROOF: (i) \Leftrightarrow (ii) See Theorem 3.3.

(ii) \Rightarrow (iii) In view of [11, 0.3.10.2] sup{ $\|f\|_{L^{\varphi}(X)} : f \in Z$ } $< \infty$ iff Z is additively bounded (see [11, 0.3.10.1]), so arguing as in the proof of [9, Lemma 2.5] we obtain that Z is bounded for $\mathcal{T}_{\varphi}(X)$.

(iii) \Rightarrow (i) Obvious.

The next theorem compares the topology $\mathcal{T}_{I}^{\varphi}(X)$ with the mixed topology $\gamma[\mathcal{T}_{\varphi}(X), \mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)}]$ in the sense of Wiweger (see [12]).

Theorem 3.8. Assume that (Ω, Σ, μ) is an atomless measure space or that μ is the counting measure on \mathbb{N} . If $(L^{\varphi}(X), \mathcal{T}_{\varphi}(X))$ is a locally bounded space, then the generalized mixed topology $\mathcal{T}_{I}^{\varphi}(X)$ coincides with the mixed topology $\gamma[\mathcal{T}_{\varphi}(X), \mathcal{T}_{\mu}(X)|_{L^{\varphi}(X)}].$

PROOF: In view of Theorem 3.7 it follows from [12, 2.2.1, 2.2.2].

An Orlicz function φ continuous for all $u \geq 0$, taking only finite values, vanishing only at zero and not bounded is usually called a φ -function. By Φ we will denote the collection of all φ -functions.

A Young function φ vanishing only at zero and taking only finite values is called an N-function whenever $\frac{\varphi(t)}{t} \to 0$ as $t \to 0$ and $\frac{\varphi(t)}{t} \to \infty$ as $t \to \infty$. By Φ_N we will denote the collection of all N-functions.

Let Φ_1 be the set of all Orlicz functions φ vanishing only at zero and such that $\varphi(t) \to \infty$ as $t \to \infty$. Denote by

$$\Phi_{11} = \{ \varphi \in \Phi_1 : \varphi(t) < \infty \text{ for } t \ge 0 \},$$

 $\Phi_{12} = \{ \varphi \in \Phi_1 : \varphi \text{ jumps to } \infty \}.$

Then $\Phi_1 = \Phi_{11} \cup \Phi_{12}$.

Theorem 3.9. Let $\varphi \in \Phi_{1i}$ (i = 1, 2). Then the topology $\mathcal{T}_I^{\varphi}(X)$ is generated by the family of solid *F*-norms:

$$\{\|\cdot\|_{L^{\psi}(X)}: \psi \in \Psi_{1i}^{\varphi}\},\$$

where $\Psi_{11}^{\varphi} = \{ \psi \in \Phi : \psi \prec \varphi \}, \quad \Psi_{12}^{\varphi} = \{ \psi \in \Phi : \psi \prec \varphi \}.$ Moreover, the following identities hold:

(3)
$$L^{\varphi}(X) = \bigcap \{L^{\psi}(X) : \psi \in \Psi_{1i}^{\varphi}\} = \bigcap \{E^{\psi}(X) : \psi \in \Psi_{1i}^{\varphi}\}.$$

PROOF: Let $\varphi \in \Phi_{1i}$ (i = 1, 2). Then \mathcal{T}_I^{φ} is the finest uniformly μ -continuous topology on L^{φ} (see [10, Theorem 2.4]) and is generated by the family $\{\|\cdot\|_{\psi}:$ $\psi \in \Psi_{1i}^{\varphi}$ (see [10, Theorem 4.5, Theorem 3.8]). Then the topology $\overline{\mathcal{T}_{I}^{\varphi}}^{\phi}$ on $L^{\varphi}(X)$ is generated by the family $\{\|\cdot\|_{L^{\psi}(X)}: \psi \in \Psi_{1i}^{\varphi}\}$ of solid *F*-norms and by Theorem 2.3 $\overline{\mathcal{T}_I^{\varphi}}$ is the finest uniformly μ -continuous topology on $L^{\varphi}(X)$. By Theorem 3.1 $\overline{\mathcal{T}_{I}^{\varphi}} = \mathcal{T}_{I}^{\varphi}(X)$, and we are done.

The identities (3) follow from [10, Theorem 3.1].

Let Φ_1^c be the set of all Young functions φ vanishing only at zero and such that $\frac{\varphi(t)}{t} \to \infty$ as $t \to \infty$. Denote by

$$\begin{split} \Phi_{11}^c &= \{\varphi \in \Phi_1^c : \varphi(t) < \infty \ \text{ for } t \ge 0 \ \text{ and } \frac{\varphi(t)}{t} \to 0 \ \text{ as } t \to 0\}, \\ \Phi_{12}^c &= \{\varphi \in \Phi_1^c : \varphi \ \text{ jumps to } \infty \ \text{ and } \frac{\varphi(t)}{t} \to 0 \ \text{ as } t \to 0\}, \end{split}$$

465Uniformly μ -continuous topologies on Köthe-Bochner spaces and Orlicz-Bochner spaces

$$\Phi_{13}^c = \{ \varphi \in \Phi_1^c : \varphi(t) < \infty \text{ for } t \ge 0 \text{ and } \frac{\varphi(t)}{t} \to a \text{ as } t \to 0 \text{ for some } a > 0 \},$$

 $\Phi_{14}^c = \{\varphi \in \Phi_1^c : \varphi \ \text{ jumps to } \infty \ \text{ and } \ \frac{\varphi(t)}{t} \to a \ \text{ as } \ t \to 0$ for some a > 0.

Then $\Phi_1^c = \bigcup_{i=1}^4 \Phi_{1i}^c$ and the sets Φ_{1i}^c (i = 1, 2, 3, 4) are pairwise disjoint. It can be seen that $\Phi_{11}^c = \Phi_N$.

Theorem 3.10. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then the topology $\mathcal{T}_I^{\varphi}(X)$ is generated by the family of solid norms

$$\{ \| \cdot \| _{L^{\psi}(X)} : \psi \in \Psi_{1i}^{\varphi}(N) \},\$$

where $\Psi_{11}^{\varphi}(N) = \{ \psi \in \Phi_N : \psi \prec \varphi \}, \ \Psi_{12}^{\varphi}(N) = \{ \psi \in \Phi_N : \psi \prec \varphi \}, \$ $\Psi_{13}^{\varphi}(N) = \{ \psi \in \Phi_N : \psi \stackrel{l}{\prec} \varphi \}, \ \Psi_{14}^{\varphi}(N) = \Phi_N.$ Moreover, the following identities hold:

(4)
$$L^{\varphi}(X) = \bigcap \{ L^{\psi}(X) : \psi \in \Psi_{1i}^{\varphi}(N) \} = \bigcap \{ E^{\psi}(X) : \psi \in \Psi_{1i}^{\varphi}(N) \}.$$

PROOF: Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then \mathcal{T}_I^{φ} is the finest uniformly μ -continuous topology on L^{φ} (see [10, Theorem 2.4]) and is generated by the family $\{||| \cdot |||_{\psi} :$ $\psi \in \Psi_{1i}^{\varphi}(N)$ } (see [10, Theorem 3.12 and Theorem 4.5]). Then the topology $\overline{\mathcal{T}_{I}^{\varphi}}$ on $L^{\varphi}(X)$ is generated by the family $\{|| \cdot ||_{L^{\psi}(X)} : \psi \in \Psi_{1i}^{\varphi}(N)\}$ of solid norms, and by Theorem 2.3 $\overline{\mathcal{T}_{I}^{\varphi}}$ is the finest uniformly μ -continuous topology on $L^{\varphi}(X)$. By Theorem 3.1 $\overline{\mathcal{T}_I^{\varphi}} = \mathcal{T}_I^{\varphi}(X)$, as desired. \square

The identities (4) follow from [10, Theorem 3.2].

As an application of Theorem 3.10 we get a characterization of uniformly μ continuous seminorms on $L^{\varphi}(X)$.

Theorem 3.11. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then for a solid seminorm ρ on $L^{\varphi}(X)$ the following statements are equivalent:

- (i) ρ is uniformly μ -continuous;
- (ii) there exist $\psi \in \Psi_{1i}^{\varphi}(N)$ and a number a > 0 such that

$$\rho(f) \le a \|\|f\|\|_{L^{\psi}(X)} \quad \text{for all} \quad f \in L^{\varphi}(X).$$

PROOF: (i) \Rightarrow (ii) Since $\mathcal{T}_{I}^{\varphi}(X)$ is the finest uniformly μ -continuous topology on $L^{\varphi}(X)$ (see Theorem 3.1), in view of Theorem 3.10 and [4, Chapter 4, §18(4)] there exist $\psi_1, \ldots, \psi_n \in \Psi_{1i}^{\varphi}(N)$ and a number a > 0 such that

$$\rho(f) \le a \max(|||f|||_{L^{\psi_1}(X)}, \dots, |||f|||_{L^{\psi_n}(X)}) \text{ for all } f \in L^{\varphi}(X).$$

K. Feledziak

Let $\psi(u) = \max(\psi_1(u), \ldots, \psi_n(u))$ for $u \ge 0$. Then $\psi \in \Psi_{1i}^{\varphi}(N)$ and $|||f|||_{L^{\psi_i}(X)} \le |||f|||_{L^{\psi}(X)}$ for $i = 1, \ldots, n$ and all $f \in L^{\varphi}(X)$, so

$$\rho(f) \le a |||f|||_{L^{\psi}(X)} \text{ for all } f \in L^{\varphi}(X).$$

(ii) \Rightarrow (i) It is obvious, because for each $\psi \in \Psi_{1i}^{\varphi}(X)$, $\|\| \cdot \|_{L^{\psi}(X)}$ is a uniformly μ -continuous norm on $L^{\varphi}(X)$.

To present the general form of $\mathcal{T}_{I}^{\varphi}(X)$ -continuous linear functionals on $L^{\varphi}(X)$ we recall the terminology concerning some spaces of X-weak measurable functions (see [2]).

Given a function $g: \Omega \to X^*$ and $x \in X$ we denote by g_x the real function on Ω defined by $g_x(\omega) = g(\omega)(x)$. A function g is said to be X-weak measurable if the functions g_x are measurable for each $x \in X$. We say that two X-weak measurable functions g_1, g_2 are equivalent whenever $g_1(\omega)(x) = g_2(\omega)(x) \mu$ -a.e. for all $x \in X$.

By $L^0(X^*, X)$ we denote the linear space of equivalence classes of all X-weak measurable functions $g: \Omega \to X^*$. It is known that the set $\{|g_x| : x \in B_X\}$ is order bounded in L^0 for every $g \in L^0(X^*, X)$.

The function $\vartheta: L^0(X^*, X) \to L^0$ defined by

$$\vartheta(g) = \sup\{|g_x| : x \in B_X\} \text{ for } g \in L^0(X^*, X)$$

is called an abstract norm.

It is known that for $f \in L^0(X)$, $g \in L^0(X^*, X)$ the function $\langle f, g \rangle : \Omega \to R$ defined by $\langle f, g \rangle(\omega) = \langle f(\omega), g(\omega) \rangle = g(\omega)(f(\omega))$ is measurable and

$$|\langle f, g \rangle(\omega)| \le ||f(\omega)||_X \cdot \vartheta(g)(\omega)$$
 μ -a.e.

For an ideal I of L^0 let

$$I(X^*, X) = \{g \in L^0(X^*, X) : \vartheta(g) \in I\}.$$

Theorem 3.12. Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). Then for a linear functional F on $L^{\varphi}(X)$ the following statements are equivalent:

- (i) F is continuous for $\mathcal{T}_{I}^{\varphi}(X)$;
- (ii) F is γ_{φ} -linear;
- (iii) there exists a unique $g \in E^{\varphi^*}(X^*, X)$ such that

$$F(f) = F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \quad \text{for} \quad f \in L^{\varphi}(X).$$

PROOF: (i) \Leftrightarrow (ii) The equivalence follows from Theorem 3.6.

(i) \Rightarrow (iii) Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). In view of Theorem 3.10 (see also the proof of Theorem 3.11) there exist $\psi \in \Psi_{1i}^{\varphi}(N)$ and r > 0 such that F is bounded on $B_X^{(\psi)}(r) \cap L^{\varphi}(X)$, where $B_X^{(\psi)}(r) = \{f \in L^{\psi}(X) : |||f|||_{L^{\psi}(X)} \leq r\}$. This means that F is continuous on the linear subspace $(L^{\varphi}(X), \mathcal{T}_{\psi}(X)|_{L^{\varphi}(X)})$ of the normed space $(E^{\psi}(X), \mathcal{T}_{\psi}(X)|_{E^{\psi}(X)})$. Hence by the Hahn-Banach extension theorem there exists a $\mathcal{T}_{\psi}(X)|_{E^{\psi}(X)}$ -continuous linear functional \overline{F} on $E^{\psi}(X)$ such that $\overline{F}(f) = F(f)$ for $f \in L^{\varphi}(X)$. Since $E^{\psi} = L_a^{\psi}$, we get $E^{\psi}(X) = L_a^{\psi}(X)$. By [2, Corollary 4.1] there exists a unique $g \in (L_a^{\psi})'(X^*, X)$ such that

$$\overline{F}(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \quad \text{for} \quad f \in L^{\psi}_{a}(X).$$

But $(L_a^{\psi})' = L^{\psi^*}$ (see [6, p.56]), so by [10, Corollary 3.5] we get $L^{\psi^*} \subset E^{\varphi^*}$. Finally, there exists a unique $g \in E^{\varphi^*}(X^*, X)$ such that

$$\overline{F}(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \quad \text{for} \quad f \in L^{\psi}_{a}(X).$$

Hence

$$F(f) = F_g(f) = \int_{\Omega} \langle f(\omega), g(\omega) \rangle \, d\mu \quad \text{for} \quad f \in L^{\varphi}(X).$$

(iii) \Rightarrow (i) Let $\varphi \in \Phi_{1i}^c$ (i = 1, 2, 3, 4). According to [10, Corollary 3.5] there exists $\psi \in \Psi_{1i}^{\varphi}(N)$ such that $g \in L^{\psi^*}(X^*, X)$. Then $L^{\varphi}(X) \subset E^{\psi}(X) \subset L^{\psi}(X)$. Moreover, by [2, Theorem 1.1] using the Hölder's inequality we get for $f \in L^{\varphi}(X)$

$$\begin{aligned} |F_g(f)| &\leq \int_{\Omega} |\langle f(\omega), g(\omega) \rangle| \, d\mu \leq \int_{\Omega} ||f(\omega)||_X \cdot \vartheta(g)(\omega) \, d\mu \\ &\leq 2 |||\widetilde{f}|||_{\psi} \cdot |||\vartheta(g)|||_{\psi^*} = 2 |||f|||_{L^{\psi}(X)} \cdot |||\vartheta(g)||_{\psi^*}. \end{aligned}$$

This means that F_g is $\mathcal{T}_{\psi}(X)|_{L^{\varphi}(X)}$ -continuous, so F_g is $\mathcal{T}_{I}^{\varphi}(X)$ -continuous, because $\mathcal{T}_{\psi}(X)|_{L^{\varphi}(X)} \subset \mathcal{T}_{I}^{\varphi}(X)$ by Theorem 3.10.

Thus the proof is complete.

References

- Aliprantis C.D., Burkinshaw O., Locally Solid Riesz Spaces, Academic Press, New York, 1978.
- Bukhvalov A.V., On an analytic representation of operators with abstract norm (in Russian), Izv. Vyssh. Uchebn. Zaved. 11 (1975), 21–32.
- [3] Feledziak K., Nowak M., Locally solid topologies on vector valued function spaces, Collect. Math., to appear.
- [4] Köthe G., Topological Vector Spaces I, Springer-Verlag, Berlin, Heidelberg, New York, 1983.

K. Feledziak

- [5] Krasnoselskii M., Rutickii Ya.B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.
- [6] Luxemburg W.A., Banach Function Spaces, Delft, 1955.
- [7] Nowak M., On two linear topologies on Orlicz spaces L^{*φ}, I, Comment. Math. 23 (1983), 71–84.
- [8] Nowak M., Inductive limit of a sequence of balanced topological spaces in Orlicz spaces L^{*φ}_F(μ), Comment. Math. 25 (1985), 295–313.
- [9] Nowak M., On some linear topology in Orlicz spaces L^{*φ}_E(μ), I, Comment. Math. 26 (1986), 51–68.
- [10] Nowak M., A generalized mixed topology on Orlicz spaces, Revista Matematica 7 (1) (1994), 27–56.
- [11] Turpin P., Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976), 221 pp.
- [12] Wiweger A., Linear spaces with mixed topology, Studia Math. 20 (1961), 47-68.

Institute of Mathematics, T. Kotarbinski Pedagogical University, Pl. Slowianski 9, 65–069 Zielona Góra, Poland

(Received March 4, 1997)