On the positivity of semigroups of operators

ROLAND LEMMERT, PETER VOLKMANN

Abstract. In a Banach space E, let U(t) (t > 0) be a C_0 -semigroup with generating operator A. For a cone $K \subseteq E$ with non-empty interior we show: (\star) $U(t)[K] \subseteq K$ (t > 0) holds if and only if A is quasimonotone increasing with respect to K. On the other hand, if A is not continuous, then there exists a regular cone $K \subseteq E$ such that A is quasimonotone increasing, but (\star) does not hold.

Keywords: semigroups of positive operators, quasimonotonicity Classification: 47D06

1. Introduction

In Section 2 below we shall prove the result mentioned in the first two phrases of the abstract, and this in the more general context of a Hausdorff topological vector space E: By a wedge we mean a non-empty, closed, convex set K in Esatisfying $\lambda K \subseteq K$ for $\lambda \geq 0$. Then $\theta \in K$ follows, θ denoting the zero-element of E. The wedge K is called a *cone*, if

(1)
$$K \cap (-K) = \{\theta\}.$$

In any case, for $x, y \in E$ we set

(2)
$$x \le y \iff y - x \in K; \ x \ll y \iff y - x \in Int K.$$

Further notations are E^{\star} for the topological dual of E and

$$K^{\star} = \{ \varphi | \varphi \in E^{\star}, \ \varphi(x) \ge 0 \ (x \in K) \}.$$

Here E is supposed to be a real space, which is not a serious restriction: If E is a complex space, we consider $E_{\mathbb{R}}$ (i.e. we restrict the scalars to \mathbb{R}), and we use the formula

$$(E_{\mathbb{R}})^{\star} = \{ \operatorname{Re} \varphi | \varphi \in E^{\star} \}.$$

Now let D be a linear subspace of E and let $A: D \to E$ be linear. This operator is called *quasimonotone increasing* with respect to the wedge $K \subseteq E$ (cf. [10]), if the following holds true:

(3)
$$x \in D \cap K, \ \varphi \in K^*, \ \varphi(x) = 0 \implies \varphi(Ax) \ge 0.$$

In Section 3 we consider ordered Banach spaces E, where the order cone K is normal (in the sense of M. Kreĭn [8]) and solid (i.e., $\operatorname{Int} K \neq \emptyset$). In the final Section 4 we construct counter-examples: Look at (3) with a cone K in a Banach space E. If $\varphi \neq 0$, then $x \in D$ is a support-point of K. Therefore, if K has no support-points $x \neq 0$ in D, then (3) holds for arbitrary linear operators $A: D \to E$, i.e., any such operator is quasimonotone increasing with respect to K.

To carry out our construction, we were searching in an incomplete normed space D for a bounded, closed, convex set $C \neq \emptyset$ without support-points. In 1985, Borwein and Tingley [3] conjectured that such a C exists in every incomplete D. So we asked Professor Borwein by e-mail on recent progress on this conjecture. He answered *immediately* that Fonf [4] had given a positive solution. We *highly appreciate* Professor Borwein's quick reaction.

There exists an extensive literature on positive semigroups of operators; cf., e.g., Arendt [1] or Arendt et al. [2]. Concerning recent research in this direction we refer to [5]. For some notions occurring in the present paper, cf. also the books of Krasnosel'skii [7] and S. Krein [9], respectively.

2. Considerations in topological vector spaces

Let E be a Hausdorff topological vector space, and let K be a wedge in E; the relations \leq and \ll are defined by (2). Furthermore, let $A : D \to E$ be a linear operator, where $D \subseteq E$. If $x \in D$, we consider the initial value problem

$$(4) u(0) = x, \ u' = Au$$

for differentiable functions

$$(5) u: [0,T) \to D$$

 $(0 < T \le \infty).$

Theorem 1. (A) For any $x \in D \cap K$ suppose (4) to have a solution

$$(6) u: [0,T) \to K$$

(where T > 0 may depend upon x). Then A is quasimonotone increasing.(B) If

(7)
$$D \cap \operatorname{Int} K \neq \emptyset$$
,

A is quasimonotone increasing, and $x \in D \cap K$, then (6) is true for any solution (5) of (4).

PROOF: (A) As in (3), suppose

$$x \in D \cap K, \ \varphi \in K^{\star}, \ \varphi(x) = 0.$$

To show

$$\varphi(Ax) \ge 0,$$

take a solution (6) of (4). Then

$$\varphi(Ax) = \varphi(Au(0)) = \varphi(u'(0)) = \lim_{t \downarrow 0} \frac{\varphi(u(t)) - \varphi(u(0))}{t}$$
$$= \lim_{t \downarrow 0} \frac{\varphi(u(t)) - \varphi(x)}{t} = \lim_{t \downarrow 0} \frac{1}{t} \varphi(u(t)) \ge 0,$$

the last inequality being a consequence of (6).

(B) Assume (7) to hold, and let A be quasimonotone increasing. Choose $p \in D \cap \text{Int } K$, and choose $\lambda > 0$ such that

(8)
$$Ap \ll \lambda p$$

Suppose $x \in D \cap K$, and let the function (5) be a solution of (4). Our aim is to show

(9)
$$u(t) \in K \ (0 \le t < T).$$

For $\varepsilon > 0$ put

(10)
$$w_{\varepsilon}(t) = u(t) + \varepsilon e^{\lambda t} p \qquad (0 \le t < T).$$

Then $w_{\varepsilon}(0) = u(0) + \varepsilon p \in \text{Int } K$, hence

(11)
$$\theta \ll w_{\varepsilon}(0).$$

Furthermore,

$$w'_{\varepsilon}(t) - Aw_{\varepsilon}(t) = u'(t) + \lambda \varepsilon e^{\lambda t} p - Au(t) - \varepsilon e^{\lambda t} Ap$$
$$= \varepsilon e^{\lambda t} (\lambda p - Ap),$$

and therefore (8) implies

(12)
$$\theta \ll w_{\varepsilon}'(t) - Aw_{\varepsilon}(t) \ (0 \le t < T).$$

A being quasimonotone increasing, the inequalities (11), (12) imply that w_{ε} can be estimated from below by the trivial solution $v(t) \equiv \theta$ of the differential equation in (4) (cf. [10]):

$$\theta \ll w_{\varepsilon}(t) \ (0 \le t < T).$$

We substitute for $w_{\varepsilon}(t)$ by (10); then $\varepsilon \downarrow 0$ gives (9).

Remark 1. If K is a cone, then in case (B) of Theorem 1 the initial value problem (4) has at most one solution (for arbitrary $x \in D$): Consider a solution $u : [0,T) \to D$ of (4) with $x = \theta$; (B) implies $u(t) \in K$ and $-u(t) \in K$ for $0 \le t < T$, hence $u(t) \equiv \theta$ because of (1).

Remark 2. If E is a Banach space and $A : E \to E$ is linear, continuous (so D = E), then (B) also is true without the hypothesis (7); i.e., the wedge K need not to be solid in this case (cf. [11], [12]).

3. Considerations in Banach spaces

We start with an example: Let $E = \mathbb{R}^3$ be ordered by means of the cone

$$K = \left\{ (\xi, \eta, \zeta) | \zeta \ge \sqrt{\xi^2 + \eta^2} \right\}.$$

The natural identification of E^* with E yields $K^* = K$, and then it is easy to show that

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

defines a quasimonotone increasing operator $A : \mathbb{R}^3 \to \mathbb{R}^3$. With I denoting the identity on \mathbb{R}^3 , the inclusion

(13)
$$(A + \lambda I)(K) \subseteq K$$

holds for no real λ . On the other hand, linear operators fulfilling (13) (for at least one λ) are always quasimonotone increasing.

Now let E be an arbitrary Banach space, and let $A : D \to E$ be linear, D being dense in E. Concerning the initial value problem (4), we formulate three conditions (H₀), (H₁), (H₂) (cf. S. Kreĭn [9]):

(H₀) For any $x \in D$, (4) has a solution $u : [0, \infty) \to D$.

(H₁) For any $x \in D$, (4) has a unique solution

$$u(\cdot) = U(\cdot)x : [0,\infty) \to D.$$

 (H_2) Condition (H_1) holds, and

(14)
$$x_n \to \theta \text{ in } D \Longrightarrow U(t)x_n \to \theta \ (t > 0).$$

If (H_1) holds, then the operators

$$U(t): D \to D \ (t > 0)$$

are linear. Under condition (H_2) they are also continuous, hence there is a unique linear, continuous continuation

(15)
$$U(t): E \to E \ (t > 0)$$

of them. If (H₂) holds with (14) uniformly satisfied on each finite interval (0, T], then the operators (15) form a C_0 -semigroup (cf. S. Kreĭn, loc. cit.).

Theorem 2. Suppose the Banach space E to be ordered by a solid, normal cone K, and let $A : D \to E$ ($\overline{D} = E$) be a linear, quasimonotone increasing operator fulfilling (H₀). Then (H₂) is true, and (14) holds uniformly on each finite interval (0, T].

PROOF: $\overline{D} = E$ and Int $K \neq \emptyset$ imply (7). Then Remark 1 implies (H₁), and (B) of Theorem 1 implies

(16)
$$U(t)[D \cap K] \subseteq K \ (t > 0).$$

We choose $p \in D \cap \text{Int } K$. The normality of K implies the boundedness (in norm) of the order-interval

$$[-p, p] = \{ x | x \in E, -p \le x \le p \}.$$

This set is also closed, convex, symmetric, and we have $\theta \in \text{Int}[-p, p]$. Therefore (after equivalent renorming of E, if necessary) we can assume that [-p, p] is the closed unit ball of E:

(17)
$$[-p,p] = S(\theta;1) = \{x | x \in E, ||x|| \le 1\}.$$

For $0 < T < \infty$ the sets $\{U(t)p | 0 < t \leq T\}$ are bounded, so there are numbers R = R(T) > 0 such that

(18)
$$U(t)p \in S(\theta; R) = [-Rp, Rp] \quad (0 < t \le T).$$

Then

(19)
$$||U(t)x|| \le R$$
 $(x \in D, ||x|| \le 1, 0 < t \le T),$

and therefore (14) holds uniformly on (0, T]. To show (19), consider $x \in D$, $||x|| \le 1$; (17) implies

$$-p \le x \le p,$$

then (16) yields

$$-U(t)p \le U(t)x \le U(t)p \qquad (t>0),$$

and because of (18) we get (19).

Remark 3. For the operators (15) we can write (16) in the following form:

$$U(t)[K] \subseteq K \ (t > 0).$$

4. Construction of counter-examples

Again let E be a Banach space, and let $A: D \to E$ be linear, where

$$(20) D \neq \overline{D} = E,$$

(21)
$$A \neq \lambda I|_D \ (\lambda \in \mathbb{R}).$$

We suppose (H_0) to be satisfied.

We shall construct a cone $K \subseteq E$ having the following two properties:

- (I) A is quasimonotone increasing with respect to K;
- (II) there is a solution $u : [0, \infty) \to D$ of (4) satisfying $u(0) \in K$, but such that the inclusion $\{u(t)|t \ge 0\} \subseteq K$ does not hold.

Observe that from (H₀) and (21) we get the existence of a solution $u : [0, \infty) \to D$ of (4), such that for (at least) one t > 0

$$a = u(0)$$
 and $b = u(t)$

are linear independent elements of D. If some cone K satisfies

$$(22) a \in K, \ b \notin K,$$

then (II) holds.

(20) implies D to be an incomplete normed space. Let C be a nonvoid, bounded, closed, convex subset of D without support-points (cf. Fonf [4]). The points a, b of D being linearly independent, we can suppose

$$(23) a \in C, \ C \cap \mathbb{R}b = \emptyset.$$

Denote by \overline{C} the closure of C in E. Then

(24)
$$K = \bigcup_{\lambda \ge 0} \lambda \overline{C}$$

is a cone in E (which is regular in the sense of Krasnosel'skii [6]), and because of (23) we have (22), hence (II). Property (I), i.e. the quasimonotonicity of A with respect to the cone (24), follows from the considerations in Section 1.

Remark 4. Let *E* be a Banach space, and suppose $A : D \to E$ to be a densely defined closed, linear operator, which generates a C_0 -semigroup. There are two possibilities:

1. $D \neq \overline{D}$: Then A is not continuous and (20), (21), (H₀) hold, hence there exists a cone $K \subseteq E$ having the properties (I), (II).

2. $D = \overline{D}$: Then $A : E \to E$ is continuous, and there is no wedge $K \subseteq E$ having the properties (I), (II) (cf. Remark 2 above).

488

References

- Arendt W., Generators of positive semigroups and resolvent positive operators, Habilitationsschrift, Univ. Tübingen, 1984.
- [2] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubrander F., Schlotterbeck U., One-parameter semigroups of positive operators, Lecture Notes in Math., vol 1184, Springer, Berlin, 1986.
- [3] Borwein J.M., Tingley D.W., On supportless convex sets, Proc. Amer. Math. Soc. 94 (1985), 471–476.
- [4] Fonf V.P., On supportless convex sets in incomplete normed spaces, Proc. Amer. Math. Soc. 120 (1994), 1173–1176.
- [5] Herzog G., Lemmert R., On quasipositive elements in ordered Banach algebras, Studia Math. 129 (1998), 59-65.
- [6] Krasnosel'skiĭ M.A., Pravil'nye i vpolne pravil'nye konusy, Doklady Akad. Nauk SSSR 135 (1960), 255–257.
- [7] Krasnosel'skiĭ M.A., Položitel'nye rešenija operatornyh uravneniĭ, Fizmatgiz, Moscow, 1962 (English translation 1964).
- [8] Kreĭn M.G., Propriétés fondamentales des ensembles coniques normaux dans l'espace de Banach, Doklady Akad. Nauk SSSR 28 (1940), 13–17.
- Kreĭn S.G., Lineĭnye differencial'nye uravnenija v banahovom prostranstve, Nauka, Moscow, 1963 (English translation 1971).
- [10] Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157–164.
- [11] Volkmann P., Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201–210.
- [12] Volkmann P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in Banachräumen, Lecture Notes in Math., vol. 415, Springer, Berlin, 1974, pp. 439– 443.

MATHEMATISCHES INSTITUT I, UNIVERSITÄT KARLSRUHE, 76128 KARLSRUHE, GERMANY *E-mail*: Roland.Lemmert@math.uni-karlsruhe.de

(Received January 31, 1997, revised March 6, 1998)