Comment.Math.Univ.Carolin. 39,3 (1998)609-615

On the functor of order-preserving functionals

T. RADUL

Abstract. We introduce a functor of order-preserving functionals which contains some
known functors as subfunctors. It is shown that this functor is weakly normal and
generates a monad.
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0. The general theory of functors acting in the category Comp of compact Haus-
dorff spaces (compacta) and continuous mappings was founded by E.V. Shchepin
[1]. He distinguished some elementary properties of such functors and defined
the notion of normal functor that has become very fruitful. The class of normal
functors includes many classical constructions: the hyperspace exp, the space of
probability measures P, the superextension )\, the space of hyperspaces of inclu-
sion G and many other functors ([2], [3]).

The algebraic applications of the theory of functors were discovered rather
recently. They are based, mainly, on the existence of a monad structure (in the
sense of S. Eilenberg and J. Moore [4]) for such functors.

For all above mentioned functors exp, P, A and G there exist the structures of
monads denoted by H, P, L and G respectively ([5]).

In this paper we introduce the functor of order-preserving functionals O. We
show that it is a weakly normal functor generating the monad @. Moreover, the
above mentioned monads H, P, I, G are contained as submonads in Q.

The paper is organized as follows: in Section 1 we investigate some properties
of order-preserving functionals and introduce the functor O, in Section 2 we prove
that O is a weakly normal functor and in Section 3 we show that the functor O
generates a monad Q.

1. All spaces are assumed to be compacta, all mappings are continuous. By w(X)
we denote the weight of X and by d(X) the density. The space of real numbers
R is considered with the usual metric.

Let X € Comp. By C(X) we denote the Banach space of all continuous func-
tions ¢ : X — R with the usual sup-norm: ||¢| = sup{|¢(z)| | + € X}. For each
¢ € R we denote by cx the constant function on C'(X) defined by the formula
cx () = c for each x € X. We will consider the natural partial order on C'(X)
defined as follows: for ¢, € C'(X) we have ¢ < ¢ iff p(x) < ¢(x) for each z € X.
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We are going to investigate the functionals v : C(X) — R. We do not suppose
apriori that v is linear or continuous.

A functional v : C(X) — R is called weakly additive if for each ¢ € R and
¢ € C(X) we have v(p+cx) = v(p)+c; order-preserving if for each ¢, € C(X)
with ¢ <1 we have v(p) < v(y) ([6]).

Lemma 1. Each order-preserving weakly additive functional is a non-expanding
map.

PRrROOF: Let v : C(X) — R be an order-preserving weakly-additive functional
and ¢, € C(X). Let ||l¢ —¢| = a € R. Then we have p —ax <9 < p+ax
and v(v) —a < v(¥) <v(p) +a. Thus |v(p) —v(¥)] < a. O

Corollary 1. FEach order-preserving weakly additive functional is continuous.

A subset L C C(X) is called an A-subspace if 0x € L and for each ¢ € L,
c € R we have p + cx € L. The next lemma can be considered as an analogue of
the Hahn-Banach theorem.

Lemma 2. For each A-subspace L C C(X) and for each order-preserving weakly
additive functional v : L — R there exists an order-preserving weakly additive
functional V' : C(X) — R such that V'|L = v.

PROOF: Let us consider the set of all pairs (B, ), where L C B C C(X) is an
A-space and p is an order-preserving weakly additive functional. This set can be
regarded as a partially ordered set by the order (B, u1) < (Be,u2) iff By C Ba
and p9 is an extension of pj. By Zorn Lemma there exists a maximal element
(Bo, to)-

Suppose that By # C(X). Take any ¢ € C(X)\ By. Let BT (B™) be
the set of all ¥ € By with ¥ > ¢ (¢ < ¢). Then we can choose p € R with
po(B™) < p < po(BT). Theset D = BoU{p+cx | ¢ € R} isan A-subset in C(X).
Define the functional p : D — R as follows: pu|Bg = pg and u(p +cx) =p+c,
c € R. It is easy to check that p is an order-preserving weakly additive functional
and we obtain the contradiction with the maximality of (Byg, uo)- O

A functional v : C(X) — R will be called normed iff v(1x) = 1.

For a compactum X, let O(X) denote the set of all order-preserving weakly
additive normed functionals. It is easy to see that for each v € O(X) and ¢ € R
we have v(cx) = c.

We consider O(X) as a subspace of the space Cp(C(X)) of all continuous func-
tions on C(X) equipped with the pointwise topology. The base of this topology
consists of sets of the form (u;¢1,...,0n; €) = {§ € Cp(C(X)) | | (¢i) —
p(pi)| < € for each i € {1,...,k}}, where u € Cp(C(X)), ¥1,...,¢r € C(X),
e>0.

Theorem 1. For each compactum X, the space O(X) is compact.

PROOF: Observe firstly that O(X) is contained in the Tychonov product of closed
intervals P = [[{[—|l¢ll;llell] | ¢ € C(X)}. Thus it is sufficient to prove that
O(X) is closed in P.
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Consider ¢ € P\ O(X). Then p fails to satisfy one of the three conditions
from the definition of O(X).

Suppose p is not normed. Then we have (u;1x; M) NO(X) =0.

Suppose p is not weakly additive. Then there exist ¢ € C(X) and ¢ € R
such that pu(p + cx) # nlp) + ¢. Put § = |u(p + cx) — ple) — ¢| > 0. Then
(N;QP+CX75070X75/4)HO(X) =0.

Finally, suppose p is not order-preserving. Then there exist @1, p2 € C(X) such

that o1 > @2 and u(p1) < p(p2). Put e = p(p2) — p(p1).  Then
(1501, 92;¢/2)NO(X) = 0. Thus O(X) is a closed subset of P. O

Let X,Y € Comp and f : X — Y be a continuous map. Define the map
O(f) : O(X) — O(Y) by the formula (O(f)(u))(¢) = p(p o f), where p € O(X)
and p € C(Y).

It is easy to check that O(f) is well defined continuous and O(f o g) = O(f) o
O(g). Thus O is a covariant functor on the category Comp.

2. In what follows we will need some notions from the general theory of functors.

Let F' : Comp — Comp be a covariant functor. A functor F' is called monomor-
phic (epimorphic) if it preserves monomorphisms (epimorphisms). For a mono-
morphic functor F' and an embedding i : A — X, we shall identify the space F(A)
and the subspace F'(i)(F(A4)) C F(X).

A monomorphic functor F' is said to be preimage-preserving if for each map
f: X — Y and each closed subset A C Y we have (F(f))~Y(F(A)) = F(f~1(A)).

For a monomorphic functor F' the intersection-preserving property is defined as
follows: F(N{Xa | a € A}) = {F(Xa) | a € A} for every family {X, | a € A}
of closed subsets of X.

A functor F is called continuous if it preserves the limits of inverse systems
S = {Xa,ph, A} over a directed set A.

Finally, a functor F is called weight-preserving if w(X) = w(F(X)) for every
infinite X € Comp.

A functor F' is called normal ([1]) if it is continuous, monomorphic, epimor-
phic, preserves weight, intersections, preimages, singletons and the empty space.
A functor F' is said to be weakly normal if it satisfies all the properties from the
definition of a normal functor except perhaps the preimage-preserving property.
Let us remark that the functors exp, P are normal and A\, G are weakly normal
(13)-

It is obvious that O preserves singletons and the empty set.
Proposition 1. O is a monomorphic functor.

PROOF: Let j: X — Y be an embedding. Let us show that O(j) : O(X) — O(Y")
is an embedding as well. If u1, uo € O(X) are two different functionals then there
exists a function ¢ € C(X) with pi(p) # pa(p). We can choose a function
4 € C(Y) such that 1o j = . Then we have (O(7) (1)) (¥) = (16 0 §) = pi(s).
Hence O(j)(p1) # O(j)(p2)- O
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Proposition 2. The functor O is epimorphic.

PROOF: Let f : X — Y be an ephimorphism and v € O(Y'). Denote by C the
subset of C'(X) consisting of the functions ¥ o f, ¥ € C(Y). It is easy to see
that C is an A-subset of C'(X). We can define a normed order-preserving weakly
additive functional v/ : C' — R by the formula /(¢ o f) = v(¢)). By Lemma 2 we
can extend 1/ to a functional u € O(X). It is obvious that O(f)(u) = v. O

For each x € X, let the functional d; € O(X) be defined by d.(¢) = ¢(z),
p € C(X). It is easy to see that the map 6 : X — O(X) defined by d(x) = Iz is
an embedding.

Lemma 3. Let (X, d) be an infinite metric space and let E,(X) be the subspace
of Cp(X) consisting of all non-expanding maps. Then w(Ey(X)) < d(Ep(X)) X
d(X).

PROOF: Let F be a dense set in Ep(X) with |F| < d(Ep(X)) and A let be a
dense set in X with [A| < d(X). Consider the family B of subsets in E,(X) of
the form (p;271,...,2n;¢€), where p € F, x; € A and € € Q. It is easy to see that
|B] < d(Ep(X)) x d(X). One can check that B is a base of the space E,(X). O

Proposition 3. The functor O preserves weight of infinite compacta.

PROOF: Since X can be embedded by the map ¢ in O(X), we have w(O(X)) >
w(X).

On the other hand, it follows from [7, 3.4.G] that for each subspace Y C Cp(Z)
we have d(Y) < w(Z). It follows from [2, 11.3.12] that w(C(X)) < w(X). Using
Lemmas 1 and 3 we obtain that w(O(X) < w(X). O

Proposition 4. O is a continuous functor.

ProoF: Let X = limS, where S = {Xa,ﬂg,/l} is an inverse system and all
Xo are compact. Denote by Y the limit space of the inverse system O(S) =
{O(Xa),O(ﬂ'g),A} and by 7 : O(X) — Y the limit of the maps O(my), where
o X — X4 are limit projections of the system S.

Let us show that 7 is a homeomorphism. Let p1, us € O(X) be two different
functionals. There exists a function ¢ € C(X) such that |u1 () — p2(e)| =a > 0.
It follows from the Weierstrass-Stone theorem that the set of functions v o mq,
where ¢ € C(Xq), @ € A is dense in C(X). Hence there exist an a € A and
a function ¢ € X, such that |¢ — ¢ o mo| < a/3. Since p; are non-expanding
functionals, we have |u;(¢) — p; (¢ o mo)| < a/3. Then

= |p1(p) — p2(p)|

= |p1(p) — (¥ o ma) + pa (v o ma) — p2(y o ma) + p2(¥ 0 Ta) — p2(y)|
lu1(p) — pr( o ma)| + [pa (v o ma) — p2(¥ o ma)| + [p2(y 0 ma) — pa2 ()|
2a/3 + |1 (1 o ma) — p2 (¢ o ma ).
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Thus we have (O(ra)(11))(¥) # (O(ma)(u2))(®) and hence O(ra)(i1) #
O(7q)(p2). Since 7 is a limit map of the maps O(my,), we have 7(u1) # m(u2).
We have just proved that 7 is an embedding. Since the functor O is epimorphic,
the map 7 is a surjection. 0

Let A be a closed subset of a compactum X . We say that u € O(X) is supported
on Aif e O(A) C O(X). By O, (X) we denote a subset of O(X) consisting of
all functionals supported on finite subsets of X.

The next corollary follows from [2] and Propositions 2, 4.

Corollary 2. O, (X) is a dense subset of O(X).

Lemma 4. Let y € O(X) and let A be a closed subset of X. Then i is supported
on A iff for each @1, 92 € C(X) with ¢1]|A = @a]A we have pu(p1) = u(e2).

Proor: Let p € O(A). Denote by i : A — X the identity embedding. Let
v1,p2 € C(X) be functions with p1]A = p3]|A. There exists a functional v €
O(A) such that O(i)(v) = p. Then we have p(p1) = v(p1|A) = v(p2|A) = u(p2).

Now let 1 € O(X) be a functional such that p(p1) = p(ps2) for each 1,92 €
C(X) with ¢1|A = p2|A. Then we can define a functional v € O(4) by v(p) =
u(¢’), where p € C(A) and ¢’ is any extension of ¢ on X. It is easy to see that
o) (v) = p. O

Proposition 5. The functor O preserves intersections.

PROOF: Since O is a continuous functor, it is sufficient to prove the proposition
for the intersection of two closed subsets A1 and As of a compactum X.

It is evident that O(A; N Az) C O(A1) N O(Az). Let us show the inverse
inclusion. Let p € O(A1) N O(Az). Choose any functions 91,99 € C(X) such
that ¢1|(A1 N A2) = 2|(A1 N Az). By Lemma 4 it is sufficient to prove that
(Y1) = p(2). Consider a function ¢ € C(X) such that ¢|A; =1 and p|Ag =

p. Since 1 € O(Ay), we have () = p(thz) and, since j € O(As), u() = p(th2).
O

The following theorem is an immediate consequence of the results of this sec-
tion.

Theorem 2. The functor O is weakly normal.

At the end of this section we give an example showing that the functor O does
not preserve preimages, thus it is not normal.

Example. Let X = {21,29,23} and Y = {y1,y2} be finite compacta (all the
points x1,x9,x3,y1,y2 are distinct). Define the map f : X — Y as follows:
f(xz1) = y1 and f(x2) = f(x3) = y2. Consider the functional d,, € O(Y) sup-
ported on {y2} C Y. Define a functional u € O(X) by the formula

() = max{min{p(z1), p(r2)}, min{p(z1), p(23)}, min{e(22), ¢(x3)}}-
It is easy to check that O(f)(u) = v and u ¢ O({z2,23}). Thus O does not

preserve preimages.
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3. In this section we show that the functor O generates a monad on Comp.

Let F', G be two functors in the category £. We say that a transformation
@ : F — G is defined if for every X € £ a mapping ¢ X : FFX — GX is given.
The transformation ¢ = {¢ X} is called natural if for every mapping f: X - Y
we have oY o F(f) = G(f) o X.

A monad T = (T, n, 1) in the category £ consists of an endofunctor 7' : £ — &
and natural transformations 7 : Idg — T (unity),  : T2 — T (multiplication)
satisfying the relations poTn = ponT =1p and po uT = poTp.

A natural transformation ¢ : T — T’ is called a morphism from a monad
T = (T,n, ) into a monad T = (7,7, 1) if won=1n"and You= p onT’ o T.
If all the components of ¢ are monomorphisms then the monad T is called a
submonad of T’.

Let us define the mapping uX : O?(X) — O(X) by the formula uX (a)(g) =
a(g), where a € O%(X), g € C(X,[0;1]) and the mapping § : O(X) — [0;1] is
given by g(u) = p(g), p € O(X). It is easy to check that uX is correctly defined
and continuous.

Put nX = 4. It is easy to check that nX and pX are the components of natural
transformations 7 : Id¢yy, — O and p: 0?2 - 0.

Theorem 3. The triple O = (O, n, u) forms a monad on the category Comp.

PrOOF: Let v € O(X). Consider any ¢ € C(X). Then we have
pX o nO(X)(v)(p) = nO(X)(¥)(¢) = ¢(v) = v(p) and uX o O(NX)(¥)(p) =
OnX)(V)(@) = v(p onX) = v(ep).
Now let N € O3(X) and ¢ € C(X). Then )
pX o pO(X)N)(p) = nOX)N)(@) = N(@) and pX o O(uX)(N)(p) =

O(uX)N)(P) = N(@ o uX) = N(@), where ¢ € C(O?(X)) is defined by the

formula (3)(v) = v(p), v € O*(X). O
Remark. It is easy to check that the monad PP is a submonad of @. On the other
hand, it is shown in [8] that a wide class of monads which includes monads G,
H, L have a functional representation, otherwise speaking, their functional part
F(X) can be embedded in RE(X). Moreover the images of A(X), exp(X) and
G(X) lie in O(X). Thus the monad O contains P, G, H, L as submonads.
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