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On the functor of order-preserving functionals

T. Radul

Abstract. We introduce a functor of order-preserving functionals which contains some
known functors as subfunctors. It is shown that this functor is weakly normal and
generates a monad.
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0. The general theory of functors acting in the category Comp of compact Haus-
dorff spaces (compacta) and continuous mappings was founded by E.V. Shchepin
[1]. He distinguished some elementary properties of such functors and defined
the notion of normal functor that has become very fruitful. The class of normal
functors includes many classical constructions: the hyperspace exp, the space of
probability measures P , the superextension λ, the space of hyperspaces of inclu-
sion G and many other functors ([2], [3]).
The algebraic applications of the theory of functors were discovered rather

recently. They are based, mainly, on the existence of a monad structure (in the
sense of S. Eilenberg and J. Moore [4]) for such functors.
For all above mentioned functors exp, P , λ and G there exist the structures of

monads denoted by H, P, L and G respectively ([5]).
In this paper we introduce the functor of order-preserving functionals O. We

show that it is a weakly normal functor generating the monad O. Moreover, the
above mentioned monads H, P, L, G are contained as submonads in O.
The paper is organized as follows: in Section 1 we investigate some properties

of order-preserving functionals and introduce the functor O, in Section 2 we prove
that O is a weakly normal functor and in Section 3 we show that the functor O
generates a monad O.

1. All spaces are assumed to be compacta, all mappings are continuous. By w(X)
we denote the weight of X and by d(X) the density. The space of real numbers
R is considered with the usual metric.
Let X ∈ Comp. By C(X) we denote the Banach space of all continuous func-

tions ϕ : X → R with the usual sup-norm: ‖ϕ‖ = sup{|ϕ(x)| | x ∈ X}. For each
c ∈ R we denote by cX the constant function on C(X) defined by the formula
cX (x) = c for each x ∈ X . We will consider the natural partial order on C(X)
defined as follows: for ϕ, ψ ∈ C(X) we have ϕ ≤ ψ iff ϕ(x) ≤ ψ(x) for each x ∈ X .
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We are going to investigate the functionals ν : C(X)→ R. We do not suppose
apriori that ν is linear or continuous.
A functional ν : C(X) → R is called weakly additive if for each c ∈ R and

ϕ ∈ C(X) we have ν(ϕ+cX ) = ν(ϕ)+c; order-preserving if for each ϕ, ψ ∈ C(X)
with ϕ ≤ ψ we have ν(ϕ) ≤ ν(ψ) ([6]).

Lemma 1. Each order-preserving weakly additive functional is a non-expanding

map.

Proof: Let ν : C(X) → R be an order-preserving weakly-additive functional
and ϕ, ψ ∈ C(X). Let ‖ϕ − ψ‖ = a ∈ R. Then we have ϕ − aX ≤ ψ ≤ ϕ + aX

and ν(ϕ)− a ≤ ν(ψ) ≤ ν(ϕ) + a. Thus |ν(ϕ) − ν(ψ)| ≤ a. �

Corollary 1. Each order-preserving weakly additive functional is continuous.

A subset L ⊂ C(X) is called an A-subspace if 0X ∈ L and for each ϕ ∈ L,
c ∈ R we have ϕ+ cX ∈ L. The next lemma can be considered as an analogue of
the Hahn-Banach theorem.

Lemma 2. For each A-subspace L ⊂ C(X) and for each order-preserving weakly
additive functional ν : L → R there exists an order-preserving weakly additive

functional ν′ : C(X)→ R such that ν′|L = ν.

Proof: Let us consider the set of all pairs (B,µ), where L ⊂ B ⊂ C(X) is an
A-space and µ is an order-preserving weakly additive functional. This set can be
regarded as a partially ordered set by the order (B1, µ1) ≤ (B2, µ2) iff B1 ⊂ B2
and µ2 is an extension of µ1. By Zorn Lemma there exists a maximal element
(B0, µ0).
Suppose that B0 6= C(X). Take any ϕ ∈ C(X) \ B0. Let B

+ (B−) be
the set of all ψ ∈ B0 with ψ ≥ ϕ (ψ ≤ ϕ). Then we can choose p ∈ R with
µ0(B

−) ≤ p ≤ µ0(B
+). The setD = B0∪{ϕ+cX | c ∈ R} is anA-subset in C(X).

Define the functional µ : D → R as follows: µ|B0 = µ0 and µ(ϕ + cX) = p + c,
c ∈ R. It is easy to check that µ is an order-preserving weakly additive functional
and we obtain the contradiction with the maximality of (B0, µ0). �

A functional ν : C(X)→ R will be called normed iff ν(1X) = 1.
For a compactum X , let O(X) denote the set of all order-preserving weakly

additive normed functionals. It is easy to see that for each ν ∈ O(X) and c ∈ R

we have ν(cX ) = c.
We consider O(X) as a subspace of the space Cp(C(X)) of all continuous func-

tions on C(X) equipped with the pointwise topology. The base of this topology
consists of sets of the form (µ;ϕ1, . . . , ϕn; ε) = {µ′ ∈ Cp(C(X)) | |µ′(ϕi) −
µ(ϕi)| < ε for each i ∈ {1, . . . , k}}, where µ ∈ Cp(C(X)), ϕ1, . . . , ϕk ∈ C(X),
ε > 0.

Theorem 1. For each compactum X , the space O(X) is compact.

Proof: Observe firstly that O(X) is contained in the Tychonov product of closed
intervals P =

∏
{[−‖ϕ‖, ‖ϕ‖] | ϕ ∈ C(X)}. Thus it is sufficient to prove that

O(X) is closed in P .



On the functor of order-preserving functionals 611

Consider µ ∈ P \ O(X). Then µ fails to satisfy one of the three conditions
from the definition of O(X).

Suppose µ is not normed. Then we have (µ; 1X ;
|µ(1X )−1|

2 ) ∩O(X) = ∅.
Suppose µ is not weakly additive. Then there exist ϕ ∈ C(X) and c ∈ R

such that µ(ϕ + cX ) 6= µ(ϕ) + c. Put δ = |µ(ϕ + cX ) − µ(ϕ) − c| > 0. Then
(µ;ϕ+ cX , ϕ, cX , δ/4) ∩O(X) = ∅.
Finally, suppose µ is not order-preserving. Then there exist ϕ1, ϕ2 ∈ C(X) such

that ϕ1 ≥ ϕ2 and µ(ϕ1) < µ(ϕ2). Put ε = µ(ϕ2) − µ(ϕ1). Then
(µ;ϕ1, ϕ2; ε/2) ∩O(X) = ∅. Thus O(X) is a closed subset of P . �

Let X,Y ∈ Comp and f : X → Y be a continuous map. Define the map
O(f) : O(X) → O(Y ) by the formula (O(f)(µ))(ϕ) = µ(ϕ ◦ f), where µ ∈ O(X)
and ϕ ∈ C(Y ).
It is easy to check that O(f) is well defined continuous and O(f ◦ g) = O(f) ◦

O(g). Thus O is a covariant functor on the category Comp.

2. In what follows we will need some notions from the general theory of functors.
Let F : Comp→ Comp be a covariant functor. A functor F is called monomor-

phic (epimorphic) if it preserves monomorphisms (epimorphisms). For a mono-
morphic functor F and an embedding i : A→ X , we shall identify the space F (A)
and the subspace F (i)(F (A)) ⊂ F (X).
A monomorphic functor F is said to be preimage-preserving if for each map

f : X → Y and each closed subset A ⊂ Y we have (F (f))−1(F (A)) = F (f−1(A)).
For a monomorphic functor F the intersection-preserving property is defined as

follows: F (
⋂
{Xα | α ∈ A}) =

⋂
{F (Xα) | α ∈ A} for every family {Xα | α ∈ A}

of closed subsets of X .
A functor F is called continuous if it preserves the limits of inverse systems

S = {Xα, p
β
α,A} over a directed set A.

Finally, a functor F is called weight-preserving if w(X) = w(F (X)) for every
infinite X ∈ Comp.
A functor F is called normal ([1]) if it is continuous, monomorphic, epimor-

phic, preserves weight, intersections, preimages, singletons and the empty space.
A functor F is said to be weakly normal if it satisfies all the properties from the
definition of a normal functor except perhaps the preimage-preserving property.
Let us remark that the functors exp, P are normal and λ, G are weakly normal
([3]).
It is obvious that O preserves singletons and the empty set.

Proposition 1. O is a monomorphic functor.

Proof: Let j : X → Y be an embedding. Let us show that O(j) : O(X)→ O(Y )
is an embedding as well. If µ1, µ2 ∈ O(X) are two different functionals then there
exists a function ϕ ∈ C(X) with µ1(ϕ) 6= µ2(ϕ). We can choose a function
ψ ∈ C(Y ) such that ψ ◦ j = ϕ. Then we have (O(j)(µi))(ψ) = µi(ψ ◦ j) = µi(ϕ).
Hence O(j)(µ1) 6= O(j)(µ2). �
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Proposition 2. The functor O is epimorphic.

Proof: Let f : X → Y be an ephimorphism and v ∈ O(Y ). Denote by C the
subset of C(X) consisting of the functions ψ ◦ f , ψ ∈ C(Y ). It is easy to see
that C is an A-subset of C(X). We can define a normed order-preserving weakly
additive functional ν′ : C → R by the formula ν′(ψ ◦ f) = ν(ψ). By Lemma 2 we
can extend ν′ to a functional µ ∈ O(X). It is obvious that O(f)(µ) = ν. �

For each x ∈ X , let the functional δx ∈ O(X) be defined by δx(ϕ) = ϕ(x),
ϕ ∈ C(X). It is easy to see that the map δ : X → O(X) defined by δ(x) = δx is
an embedding.

Lemma 3. Let (X, d) be an infinite metric space and let Ep(X) be the subspace
of Cp(X) consisting of all non-expanding maps. Then w(Ep(X)) ≤ d(Ep(X)) ×
d(X).

Proof: Let F be a dense set in Ep(X) with |F | ≤ d(Ep(X)) and A let be a
dense set in X with |A| ≤ d(X). Consider the family B of subsets in Ep(X) of
the form (ϕ;x1, . . . , xn; ε), where ϕ ∈ F , xi ∈ A and ε ∈ Q. It is easy to see that
|B| ≤ d(Ep(X))× d(X). One can check that B is a base of the space Ep(X). �

Proposition 3. The functor O preserves weight of infinite compacta.

Proof: Since X can be embedded by the map δ in O(X), we have w(O(X)) ≥
w(X).
On the other hand, it follows from [7, 3.4.G] that for each subspace Y ⊂ Cp(Z)

we have d(Y ) ≤ w(Z). It follows from [2, II.3.12] that w(C(X)) ≤ w(X). Using
Lemmas 1 and 3 we obtain that w(O(X) ≤ w(X). �

Proposition 4. O is a continuous functor.

Proof: Let X = limS, where S = {Xα, π
β
α,A} is an inverse system and all

Xα are compact. Denote by Y the limit space of the inverse system O(S) =

{O(Xα), O(π
β
α),A} and by π : O(X) → Y the limit of the maps O(πα), where

πα : X → Xα are limit projections of the system S.
Let us show that π is a homeomorphism. Let µ1, µ2 ∈ O(X) be two different

functionals. There exists a function ϕ ∈ C(X) such that |µ1(ϕ)−µ2(ϕ)| = a > 0.
It follows from the Weierstrass-Stone theorem that the set of functions ψ ◦ πα,
where ψ ∈ C(Xα), α ∈ A is dense in C(X). Hence there exist an α ∈ A and
a function ψ ∈ Xα such that |ϕ − ψ ◦ πα| < a/3. Since µi are non-expanding
functionals, we have |µi(ϕ)− µi(ψ ◦ πα)| < a/3. Then

a = |µ1(ϕ)− µ2(ϕ)|

= |µ1(ϕ)− µ1(ψ ◦ πα) + µ1(ψ ◦ πα)− µ2(ψ ◦ πα) + µ2(ψ ◦ πα)− µ2(ϕ)|

≤ |µ1(ϕ)− µ1(ψ ◦ πα)|+ |µ1(ψ ◦ πα)− µ2(ψ ◦ πα)|+ |µ2(ψ ◦ πα)− µ2(ϕ)|

≤ 2a/3 + |µ1(ψ ◦ πα)− µ2(ψ ◦ πα)|.
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Thus we have (O(πα)(µ1))(ψ) 6= (O(πα)(µ2))(ψ) and hence O(πα)(µ1) 6=
O(πα)(µ2). Since π is a limit map of the maps O(πα), we have π(µ1) 6= π(µ2).
We have just proved that π is an embedding. Since the functor O is epimorphic,
the map π is a surjection. �

Let A be a closed subset of a compactumX . We say that µ ∈ O(X) is supported
on A if µ ∈ O(A) ⊂ O(X). By Oω(X) we denote a subset of O(X) consisting of
all functionals supported on finite subsets of X .
The next corollary follows from [2] and Propositions 2, 4.

Corollary 2. Oω(X) is a dense subset of O(X).

Lemma 4. Let µ ∈ O(X) and let A be a closed subset of X . Then µ is supported
on A iff for each ϕ1, ϕ2 ∈ C(X) with ϕ1|A = ϕ2|A we have µ(ϕ1) = µ(ϕ2).

Proof: Let µ ∈ O(A). Denote by i : A → X the identity embedding. Let
ϕ1, ϕ2 ∈ C(X) be functions with ϕ1|A = ϕ2|A. There exists a functional ν ∈
O(A) such that O(i)(ν) = µ. Then we have µ(ϕ1) = ν(ϕ1|A) = ν(ϕ2|A) = µ(ϕ2).
Now let µ ∈ O(X) be a functional such that µ(ϕ1) = µ(ϕ2) for each ϕ1, ϕ2 ∈

C(X) with ϕ1|A = ϕ2|A. Then we can define a functional ν ∈ O(A) by ν(ϕ) =
µ(ϕ′), where ϕ ∈ C(A) and ϕ′ is any extension of ϕ on X . It is easy to see that
O(i)(ν) = µ. �

Proposition 5. The functor O preserves intersections.

Proof: Since O is a continuous functor, it is sufficient to prove the proposition
for the intersection of two closed subsets A1 and A2 of a compactum X .
It is evident that O(A1 ∩ A2) ⊂ O(A1) ∩ O(A2). Let us show the inverse

inclusion. Let µ ∈ O(A1) ∩ O(A2). Choose any functions ψ1, ψ2 ∈ C(X) such
that ψ1|(A1 ∩ A2) = ψ2|(A1 ∩ A2). By Lemma 4 it is sufficient to prove that
µ(ψ1) = µ(ψ2). Consider a function ϕ ∈ C(X) such that ϕ|A1 = ψ1 and ϕ|A2 =
ψ2. Since µ ∈ O(A1), we have µ(ϕ) = µ(ψ2) and, since µ ∈ O(A2), µ(ϕ) = µ(ψ2).

�

The following theorem is an immediate consequence of the results of this sec-
tion.

Theorem 2. The functor O is weakly normal.

At the end of this section we give an example showing that the functor O does
not preserve preimages, thus it is not normal.

Example. Let X = {x1, x2, x3} and Y = {y1, y2} be finite compacta (all the
points x1, x2, x3, y1, y2 are distinct). Define the map f : X → Y as follows:
f(x1) = y1 and f(x2) = f(x3) = y2. Consider the functional δy2 ∈ O(Y ) sup-
ported on {y2} ⊂ Y . Define a functional µ ∈ O(X) by the formula

µ(ϕ) = max{min{ϕ(x1), ϕ(x2)},min{ϕ(x1), ϕ(x3)},min{ϕ(x2), ϕ(x3)}}.

It is easy to check that O(f)(µ) = ν and µ /∈ O({x2, x3}). Thus O does not
preserve preimages.
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3. In this section we show that the functor O generates a monad on Comp.
Let F , G be two functors in the category E . We say that a transformation

ϕ : F → G is defined if for every X ∈ E a mapping ϕX : FX → GX is given.
The transformation ϕ = {ϕX} is called natural if for every mapping f : X → Y
we have ϕY ◦ F (f) = G(f) ◦ ϕX .
A monad T = (T, η, µ) in the category E consists of an endofunctor T : E → E

and natural transformations η : IdE → T (unity), µ : T 2 → T (multiplication)
satisfying the relations µ ◦ Tη = µ ◦ ηT =1T and µ ◦ µT = µ ◦ Tµ.
A natural transformation ψ : T → T ′ is called a morphism from a monad

T = (T, η, µ) into a monad T′ = (T ′, η′, µ′) if ψ ◦ η = η′ and ψ ◦µ = µ′ ◦ ηT ′ ◦Tψ.
If all the components of ψ are monomorphisms then the monad T is called a
submonad of T′.
Let us define the mapping µX : O2(X) → O(X) by the formula µX(α)(g) =

α(g̃), where α ∈ O2(X), g ∈ C(X, [0; 1]) and the mapping g̃ : O(X) → [0; 1] is
given by g̃(µ) = µ(g), µ ∈ O(X). It is easy to check that µX is correctly defined
and continuous.
Put ηX = δ. It is easy to check that ηX and µX are the components of natural

transformations η : IdComp → O and µ : O2 → O.

Theorem 3. The triple O = (O, η, µ) forms a monad on the category Comp.

Proof: Let ν ∈ O(X). Consider any ϕ ∈ C(X). Then we have
µX ◦ ηO(X)(ν)(ϕ) = ηO(X)(ν)(ϕ̃) = ϕ̃(ν) = ν(ϕ) and µX ◦ O(ηX)(ν)(ϕ) =
O(ηX)(ν)(ϕ̃) = ν(ϕ̃ ◦ ηX) = ν(ϕ).
Now let N ∈ O3(X) and ϕ ∈ C(X). Then

µX ◦ µO(X)(N )(ϕ) = µO(X)(N )(ϕ̃) = N (˜̃ϕ) and µX ◦ O(µX)(N )(ϕ) =
O(µX)(N )(ϕ̃) = N (ϕ̃ ◦ µX) = N (˜̃ϕ), where ˜̃ϕ ∈ C(O2(X)) is defined by the

formula (˜̃ϕ)(ν) = ν(ϕ̃), ν ∈ O2(X). �

Remark. It is easy to check that the monad P is a submonad of O. On the other
hand, it is shown in [8] that a wide class of monads which includes monads G,
H, L have a functional representation, otherwise speaking, their functional part

F (X) can be embedded in RC(X). Moreover the images of λ(X), exp(X) and
G(X) lie in O(X). Thus the monad O contains P, G, H, L as submonads.
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