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Metric–fine uniform frames

J.L. Walters-Wayland

Abstract. A locallic version of Hager’s metric-fine spaces is presented. A general de-
finition of A-fineness is given and various special cases are considered, notably A =
all metric frames, A = complete metric frames. Their interactions with each other,
quotients, separability, completion and other topological properties are discussed.
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We present a locallic version of metric-fine spaces which were introduced by
Hager in “Some nearly fine uniform spaces”. These spaces and related ideas were
studied in detail by a group of topologists in the seventies in seminars, “Seminar
Uniform Spaces”, under the direction of Zdeněk Frolik in Prague. Specifically,
the work done by Frolik, Hager and Rice is relative to this paper. A general defi-
nition of A-fineness will be given and A-fine frames are shown to be ubiquitous.
Special cases will be considered, notably A = all metric frames, and A = all com-
plete metric frames. Their behaviour and interactions with each other, quotients,
separability, completeness and other topological properties will be discussed. In
particular, Lindelöf and pseudocompact frames will be characterised in terms of
thisM-fine property. In this setting, the interactions and some of the proofs are
more elegant and perspicuous than their spatial counterparts.

Preliminaries on uniform frames

A frame is a bounded lattice L with top e and bottom 0, which is complete
and satisfies x ∧

∨
S =

∨
{ x ∧ t | t ∈ S } for x ∈ L and any S ⊆ L. A frame

map is a function which preserves e, 0, ∧ and
∨
. The resulting category will

be denoted Frm. A standard reference for frames is Johnstone [17]. A cover of
a frame L is a subset A ⊆ L with

∨
A = e. Let Cov(L) denote all the covers

of L. L is said to be compact (respectively, Lindelöf ) if each cover has a finite
(respectively, countable) subcover. For A, B ⊆ L, A is called a refinement of B,
written A ≤ B, if for each a ∈ A there exists b ∈ B with a ≤ b. For any x ∈ L
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the star of x relative to a cover A is the element Ax =
∨
{a ∈ A | a ∧ x 6= 0}.

If A is a subset of Cov(L) then x ⊳A y in L if there exists A ∈ A with Ax ≤ y.
Let LA = {x ∈ L | x =

∨
{y | y ⊳A x}}. A star refinement of a cover B of L

is a cover A of L such that the cover {Ax | x ∈ A} refines B. We write this
as A ≤∗ B. A cover A is said to be normal whenever there exists a sequence
(An)n∈N of covers such that A = A0 and An+1 ≤

∗ An for all n ∈ N. Further, L
is called fully normal if every cover is normal.
A preuniformity on L is a filter of covers µ (relative to ≤) such that each A ∈ µ

is star refined by some B ∈ µ, and a uniformity is a preuniformity which satisfies
the compatibility condition that L = Lµ, that is, each a ∈ L is the join of all
x ∈ L such that Ax ≤ a for some A ∈ µ. If the latter condition holds, x is said to
be uniformly below a, written x⊳a. A uniform frame is a frame L together with a
specified uniformity µ and is denoted (L, µ). A uniform map is a frame map which
preserves uniform covers. The resulting category will be denoted by UniFrm.
Every uniform frame is completely regular, and every completely regular frame
admits a uniformity ([23]). In fact, every completely regular frame L admits a
finest uniformity which consists of all the normal covers. This uniformity will be
called the fine uniformity of L and will be denoted by αL. A uniform frame is
subfine if it is a quotient of a fine uniform frame, and cozfine if it has a base
consisting of countable covers of uniform cozero elements ([36]). See below for
details on uniform cozero elements. A uniform map h : (L, µ) −→ (M, υ) is a
surjection or (uniform) quotient if it is onto, and υ is generated by the image
covers h[A], A ∈ µ. We say a uniform frame is complete if every dense surjection
is an isomorphism. It has been shown that every uniform frame has a unique (up
to isomorphism) completion which will be denoted by γL : C(L, µ)։ (L, µ). See
[6] or [15]. We will need the following proposition (for a proof see [34]) which
follows from the result of Banaschewski and Pultr [6] that the completion functor
C takes dense surjections to isomorphisms:

Proposition. In UniFrm, if a reflection preserves quotients and completeness,
and the underlying frame, then it commutes with the completion functor.

A uniform frame (L, µ) is separable, or enumerable, if µ has a basis of countable
covers. For any uniform frame (L, µ), let eµ be the uniformity generated by all
countable uniform covers, then the separable uniform frames SepUniFrmmay be
shown to be a coreflective subcategory ofUniFrm with coreflection functor e, and
coreflection map the identity. For any uniform frame (L, µ) the “uniform cozero
part”, written CozuL, consists of those elements a ∈ L such that a = h((0, 1])
for some uniform h : O[0, 1] −→ (L, µ). (Note that since O[0, 1] is compact it
admits a unique uniformity.) The elements of CozuL are called uniform cozero
elements , or often simply cozero elements, if the context is clear. If the uniformity
is the fine one, then these are precisely the cozero elements with respect to all
frame maps. That is, CozL = Cozu(L, αL). The category of uniform σ-frames,
denoted UniσFrm, can also be defined ([32]), and then Cozu may be regarded
as a functor from UniFrm to UniσFrm, by taking the uniformity generated by
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countable uniform covers consisting of cozero elements. It is interesting to note
that Cozu(L, µ) generates the separable coreflection of (L, µ), in the sense that
each element of L is a join of elements from CozuL, and each uniform cover in eµ

is refined by a uniform cover of Cozu(L, µ) ([32]). A uniform map is coz codense
if the top element is the only cozero element mapped to the top. The subspace
topology OA on a subset A of a Tychonoff space X is a coz codense quotient of
OX if and only if A is Gδ-dense in X ([34]).

Some basics on metric frames

A uniform frame is said to be metric if the uniformity has a countable base, or
equivalently, it admits a metric diameter ([24]). The metric frames can be thought
of as “generating” the uniform frames in the sense that each uniform frame is
a quotient of a coproduct of metric frames. Using the result that for metric
frames, Lindelöf and second countable (that is, the frame has a countable base)
are equivalent, it can be seen that separable metric frames are Lindelöf. Moreover,
the fine uniformity on a separable metric frame is separable. Also, a metric
subframe of a separable uniform frame is separable. We also have that every
element of a metric frame is a uniformly cozero element, that is, Cozu(M, ρ) =M

for a metric frame (M, ρ). Using properties of metric frames it is possible to get
a frame version of Gleason’s theorem for metric spaces ([16]):

Proposition. Every uniform map from a metric frame to a quotient of an arbi-
trary coproduct of metric frames factors through a countable subcoproduct.

The detailed proofs of these results can be found in the Doctoral Thesis of the
author ([34]).

A-fine uniform frames

Let A be any class of uniform frames, then a given uniform frame (L, µ)
is A-fine if whenever f : (M, υ) −→ (L, µ) is uniform with (M, υ) ∈ A, f :
(M, αM ) −→ (L, µ) is also uniform. Recall that αM denotes the fine uniformity
on M . Clearly the fine uniformity on a uniformizable frame is A-fine for any
class A, so each uniformizable frame admits A-fine uniformities. Moreover, if
A is the class of all uniform frames, then “A-fineness” is simply “fineness”. To
consider some special cases of “A-fineness” we need to recall the definition of a
projective frame (in the categorical sense): a uniform frame (L, µ) is projective
if whenever (N, δ) is a quotient of any uniform frame (M, υ), every uniform map
(L, µ) −→ (N, δ) can be extended to a uniform map (L, µ) −→ (M, υ). Let P
denote the collection of all projective frames, then the following proposition shows
that the subfine uniform frames are precisely the P-fine uniform frames.

Proposition. A uniform frame (L, µ) is subfine iff it is P-fine.

Proof: Consider any uniform map f : (P, υ) −→ (L, µ) with (P, υ) projective.
Suppose h : (K, αK) −→ (L, µ) makes (L, µ) subfine. Since (P, υ) is projective,



620 J.L.Walters-Wayland

there exists a uniform map f̄ such that the diagram commutes:

(P, υ)
f //

f̄ $$J
J

J
J

J
(L, µ)

(K, αK)

h

OO

But αK is the fine uniformity so f̄ : (P, αP ) −→ (K, αK) is also uniform. Since
f = h◦ f̄ , f : (P, αP ) −→ (L, µ) is uniform. The converse follows directly from the
construction of the subfine reflection ([34]): (L, µ) is a quotient of a projective
frame, say (P, υ) with quotient map h. Since (L, µ) is P-fine, this map is still
uniform for the fine uniformity on P , that is, h : (P, αP ) −→ (L, µ) is uniform,
and hence (L, µ) is subfine. �

Now let L denote the collection of all Lindelöf uniform frames, then we show
that the cozfine uniform frames are precisely the L-fine uniform frames.

Proposition. (L, µ) is L-fine iff (L, µ) is cozfine.

Proof: Suppose that (L, µ) is cozfine, and consider any uniform map f : (K, υ)
−→ (L, µ) with K Lindelöf. Since K is Lindelöf, the fine uniformity αK has a
basis of countable cozero covers and thus f : (K, αK) −→ (L, µ) is still uniform.
Conversely, suppose (L, µ) is L-fine, and consider the following uniform map:

HCozu(L, µ)
εL // (L, µ).

Now HCozu(L, µ) is Lindelöf, so the map is still uniform when the fine uniformity
is on HCozu(L, µ):

(HCozuL, αHCozuL)
εL // (L, µ).

Take any countable cozero cover (an) of L, then (↓ an) is a countable cozero cover
of HCozuL, and hence in αHCozuL. Thus εL(↓ an) ∈ µ. Since εL(↓ an) = (an),
this shows that (L, µ) is cozfine. �

The A-fine reflection.
Since all three examples ofA-fine subcategories mentioned above form reflective

subcategories in UniFrm, it is not surprising that a general construction should
exist. Let (L, µ) be any uniform frame and define µ̃ as follows: µ̃ is generated
by images of all normal covers of uniform frames (M, δ) ∈ A under uniform
maps (M, δ) −→ (L, µ). Let µ̂ = µ̃ ∨ µ, then µ̂ is a compatible uniformity so
(L, µ̂) is a uniform frame. Note that µ ≤ µ̂ ≤ αL and that µ ≤ υ implies
µ̂ ≤ υ̂. Moreover, if µ is A-fine, then µ = µ̂, and conversely. Let aµ be the
uniformity constructed by transfinite iteration of this hat operation. This process
must terminate since µ̂ ≤ αL for any compatible µ. Moreover, it can be shown
that aµ =

⋂
{υ | µ ≤ υ = υ̂}: by construction µ ≤ aµ = âµ, so one inclusion holds.

For the converse, take any υ with µ ≤ υ = υ̂. Then µ̂ ≤ υ = υ̂, and repeating
this process transfinitely gives aµ ≤ υ = υ̂. Thus aµ ⊆

⋂
{υ | µ ≤ υ = υ̂}. We

also show that uniform maps preserve the hat operation:
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Lemma. If f : (L, µ) −→ (K, υ) is uniform then so is f : (L, µ̂) −→ (K, υ̂).

Proof: Suppose f : (L, µ) −→ (K, υ) is uniform, and take any A ∈ µ̂ with A

coming from µ̃, say A = g[B] with g : (M, δ) −→ (L, µ) uniform, B a normal
cover of M and (M, δ) ∈ A. Consider the following diagram:

(M, δ)
g // (L, µ)

f

��

idL // (L, µ̂)

���
�

�

(K, υ)
idK // (K, υ̂)

Obviously f ◦ g[B] ∈ υ̂, and thus so is f [A]. �

If we consider the uniformity aµ constructed above on any given uniform frame
(L, µ), then (L, µ) −→ (L, aµ) is obviously uniform. Moreover, the latter frame
is A-fine: take any uniform map f : (M, δ) −→ (L, aµ) with (M, δ) ∈ A and
consider the following diagram:

(M, δ)

��

f // (L, aµ) // (L, υ) = (L, υ̂)

(M, αM )

f
99s

s
s

s
s f

66

f is uniform for each uniformity υ = υ̂ since (L, υ) is A-fine, and thus it is
uniform for the intersection of all these uniformities. Now take any uniform map
f : (L, µ) −→ (K, υ) with (K, υ) A-fine, then f : (L, µ̂) −→ (K, υ) remains
uniform since υ = υ̂. And thus by the definition of aµ, f : (L, aµ) −→ (K, υ) is
uniform. Thus we have shown:

Proposition. A-fine uniform frames form a reflective subcategory of UniFrm
with reflection functor a.

Metric-fine uniform frames

LetM be the subcategory of UniFrm consisting of all metric frames, that is,
uniform frames with countable bases, and consider the frames which are Metric-
fine, or M-fine (for the equivalent notion in spaces see Hager [11]). Using the
general result from above, we have that theM-fine uniform frames form a reflec-
tive subcategory ofUniFrm. We will denote the reflection functor by m. Various
properties of metric frames can be used to simplify the construction of the A-fine
reflection in the special case where A =M. For example, µ ⊆ µ̃, so µ̃ = µ̂ in this
case. The next few results will make this more precise.
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Lemma. The following are equivalent for a uniform frame (L, µ):

(1) (L, µ) isM-fine;
(2) whenever f : (M, ρ) −→ (L, µ) is uniform for metric (M, ρ), f [A] ∈ µ for

each cover A of M ;

(3) whenever (M, ρ) is metric and a uniform subframe of (L, µ), then (M, αM )
is also a uniform subframe.

Proof: Since metric frames are paracompact, the fine uniformity on a metric
frame consists of all covers, and thus (1) implies (2). The converse is obviously
true. (1) implies (3) is trivial. Suppose (3) holds for a uniform frame (L, µ). Let
f : (M, ρ) −→ (L, µ) be a uniform map with (M, ρ) metric. Now consider the
factorisation

(M, ρ)
f // (f [M ], f [ρ])

� � i // (L, µ).

Clearly both the maps are uniform, and (f [M ], f [ρ]) is metric. By hypothesis,
every cover of f [M ] is in µ. Take any cover A of M , then f [A] is a cover of f [M ]
and thus f [A] ∈ µ. Thus (3) implies (1). �

The next proposition shows that the transfinite iteration which is used in the
general case is not required here, in fact, (L, µ̃) is alreadyM-fine:

Proposition. If, for any uniform frame (L, µ), µ̃ is generated by uniform images
of all covers of metric frames (M, ρ), then (L, µ̃) is an M-fine uniform frame.
Thus mµ = µ̃.

Proof: It should be noted that basic elements of µ̃ are finite meets of uniform
images of covers of metric frames. Let f : (M, ρ) −→ (L, µ̃) be a uniform map with
(M, ρ) metric. We must show that f : (M, αM ) −→ (L, µ̃) is uniform. Since (M, ρ)
is metric, it has a countable basis, say A1, A2 . . . . For each n, f [An] ∈ µ̃, and so by
the definition of µ̃, there exists a finite set F (n) and maps gs : (Ms, ρs) −→ (L, µ)
with (Ms, ρs) metric for each s ∈ F (n) such that

∧
s∈F (n) gs[Cs] ≤ f [An] with

Cs covers of Ms. Let (N, δ) =
⊕

s∈F (n),n∈N
(Ms, ρs), a countable coproduct of

metric frames, hence metric. Let (N, δ)
g
−→ (L, µ) be the induced map. By

general properties of the coproduct, for each n there exists a cover Cn of N with
g[Cn] ≤ f [An]. Now consider the factorisation:

(N, δ)

ḡ ##HHHHH
HHH

##

g // (L, µ)

(Z, υ)

e
,
�

;;vvvvvvvvv

Then (Z, υ) is also metric, and hence, by the definition of µ̃, e : (Z, αZ) →֒ (L, µ̃)
is uniform. By an argument similar to that used in the proof of the locallic version
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Gleason’s theorem ([34]), since each f(An) is refined by a cover in αZ , f [M ] ⊆ Z.
Thus as a uniform map f factors through (Z, αZ):

(Z, αZ)
� � // (L, µ̃)

(M, ρ)

f

OO

f̄

eeJ
J

J
J

J

But then f̄ : (M, αM ) −→ (Z, αZ) is uniform and thus so is f : (M, αM ) −→
(L, µ̃). �

The next proposition shows that the one above extends the corresponding result
for spaces obtained by Rice [28]. However, Rice proved this using the existence
of the M-fine coreflection and his proof depended on some technical results and
the notion of “metrically determined categories” (which has been explored in the
frame setting ([34]) but will not be discussed in this paper). These complications
are avoided through the proof given above.

Proposition. For any uniform space µX , µX isM-fine iff OµX isM-fine. That
is,M-fineness is a conservative notion.

Proof: Suppose µX is an M-fine uniform space. Consider any uniform frame

map (M, ρ)
h
−→ OµX with (M, ρ) metric. Then, since Σ(M, ρ) is a metric space,

theM-fineness of µX gives

Σ(M, ρ) ΣOµX
Σhoo µX

OXoo

ttiiiiiiiiiiiiiiiiiii

(ΣM, αΣM )

id

OO

And hence (M, αM ) −→ O(ΣM, αΣM ) −→ OµX is uniform.
Conversely, suppose that OµX is an M-fine uniform frame, and take any uni-

formly continuous map ρY
f
←− µX with ρY a metric space. Then OρY

Of
−→

OµX is uniform, and thus so is (OY, αOY )
Of
−→ OµX , and hence (ΣOY, α)

ΣOf
←−

ΣOµX
OX←− µX is uniformly continuous. The result follows since metric spaces

are sober, that is ΣOρY ∼= ρY and hence (ΣOY, α) ∼= αY . �

M-fineness and separability.
As mentioned in the preliminaries of this paper, the separable uniform frames

form a coreflective subcategory of UniFrm. We now explore how the property of
separability interacts with that ofM-fineness. Since metric subframes of separable
frames are separable, and hence Lindelöf, if (M, ρ) →֒ (L, eµ) is uniform with
(L, µ)M-fine and (M, υ) metric, then (M, αM ) is separable, so (M, αM ) →֒ (L, µ)
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is uniform and factors through the separable coreflection. That is, (M, αM ) →֒
(L, eµ) is uniform. Thus we have that M-fineness is preserved by the separable
coreflection. Moreover, since µ ⊆ mµ, if µ is separable then µ ⊆ emµ. By the
argument above, emµ is M-fine, so emµ = mµ. This shows that separability,
in turn, preserves the M-fine reflection. One consequence of the above is that
the separable coreflection of the fine uniformity, that is the Shirota uniformity, is
M-fine: by the above meα is separable, so meα ⊆ eα. Hence the two are equal.
Moreover, using some basic diagram chasing, we can show the following:

Proposition. The separable coreflection commutes with the M-fine reflection.
That is, (L, emµ) = (L, meµ).

This well-behaved interaction makes it possible to restrict to the subcategory
of separable uniform frames to get the following result:

Proposition. The separableM-fine frames form a reflective subcategory of the
separable uniform frames.

Now consider the case where A is the subcategory SM of separable metric
fames, with reflection given by ms. Clearly everyM-fine frame is SM-fine, but
the converse need not true. However when restricting to separable frames it is:

Proposition. For separable (L, µ), if (L, µ) is SM-fine then it isM-fine. Hence
msµ = mµ for separable (L, µ).

Proof: Suppose (L, µ) is separable and SM-fine. Take any metric subframe
(M, ρ) of (L, µ), then (M, ρ) is separable, and so by hypothesis (M, αM ) →֒ (L, µ)
is uniform. �

Since every separable metric frame is Lindelöf, and the connection between
cozfine and Lindelöf frames has been established, it is clear that there should be a
connection betweenM-fine and cozfine uniform frames. This is indeed the case.
We recall that the cozfine uniform frames form a reflective subcategory, with the
reflection map given by (L, µ) −→ (L, αµ), where αµ is the uniformity generated
by all countable covers consisting of uniform cozero elements [36]. The following
theorem is analogous to the spatial result obtained by Hager [11]:

Theorem. For (L, µ) separable, (L, µ) is M-fine iff (L, µ) is cozfine. In fact
mµ = αµ for separable (L, µ).

Proof: Suppose (L, µ) isM-fine. Let (an) be a countable cozero cover of (L, µ),
with an = hn(R − 0) where hn : OR −→ (L, µ) is uniform, taking the standard
uniformity on OR. This gives rise to a uniform map

⊕
nOR

h // (L, µ)

where
⊕

nOR is the coproduct. Let εn be the coproduct maps. Since the count-
able coproduct of metric frames is metric ([6]) and (L, µ) isM-fine,

(
⊕

nOR, αL
n
OR)

h // (L, µ)
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is also uniform. Now (εn(R−0)) covers
⊕

nOR, and hence is in the fine uniformity,
since the fine uniformity consists of all covers. Thus h[(εn(R − 0))] ∈ µ. But
h[(εn(R− 0))] = (hn(R− 0)) = (an), so (an) ∈ µ. Hence αµ = µ.
For the converse, suppose (L, µ) is cozfine. Let (M, ρ) be any metric subframe of
(L, µ) with f : (M, ρ) →֒ (L, µ) uniform. Then (M, ρ) is separable and so is αM .
Take any basic cover A of the fine uniformity on M , that is, a countable cover of
cozero elements. Then f [A] is a countable cozero cover of L, but (L, µ) is cozfine,
so f [A] ∈ µ, hence f : (M, αM ) −→ (L, µ) is uniform, and so (L, µ) isM-fine.

�

The above characterisation of the separable M-fine frames can be used to
further explore the interaction between them and the SM-fine frames:

Proposition. For any uniform frame (L, µ), meµ = emsµ. That is, theM-fine
reflection of the separable coreflection is the separable coreflection of the SM-fine
reflection.

Proof: Note that since eµ is separable, meµ = αeµ. It is clear that (L, meµ)
idL−→

(L, msµ) is uniform. And thus, so is (L, meµ)
idL−→ (L, emsµ). Now take any

countable cozero cover A ∈ msµ. Then if A ∈ µ, it is obviously in αµ. Otherwise
A = f [B] for some uniform cover B of a separable metric frame. So there exists
a countable uniform cozero cover C ≤ B, and thus f [C] ∈ αeµ, and therefore so
is A. Hence αeµ = emsµ. �

This is the frame analogue of the result that Frolik proves for spaces in [10].

M-fineness and completion.
It can be shown that the cozfine reflection commutes with the completion

functor iff the completion map is coz codense [36], and thus the same is true
for the M-fine reflection when restricted to the separable uniform frames. The
solution is not known for the general case in the frame setting. However it may
be shown that completeness is preserved by theM-fine reflection and conversely,
thatM-fineness is preserved by the completion functor:

Proposition. If (L, µ) is complete then so is (L, mµ). Moreover, if (L, µ) is
M-fine then so is C(L, µ).

Proof: Since mµ is finer than µ, if (L, µ) is complete, then so is (L, mµ).
Suppose (L, µ) is M-fine, and take f : (M, ρ) −→ C(L, µ) uniform with (M, ρ)
metric. Consider

(M, ρ)
f //

γL◦f $$JJJJJJJJJ
C(L, µ)

γL

����
(L, µ)

Since (L, µ) is M-fine, (M, αM )
γL◦f
−→ (L, µ) is uniform. But M is metric hence
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paracompact, and thus (M, αM ) is complete [7], so f : (M, αm) −→ C(L, µ) is
uniform. Thus C(L, µ) isM-fine. �

(Complete metric)-fine uniform frames

We now consider the case where A is the subcategory CM of complete metric
frames. Clearly every M-fine frame is CM-fine. The general result for reflec-
tivity can be applied to show that the CM-fine uniform frames form a reflective
subcategory of UniFrm. The reflection will be denoted by mc. In the setting
of spaces the analogous subcategory is calledM1-fine ([11]) or sub-M-fine ([28]).
This latter terminology is justified by the last theorem of this section which shows
that these frames are precisely the quotients ofM-fine uniform frames. Using the
results that complete metric frames are spatial, and hence (M, ρ) complete metric
implies Σ(M, ρ) complete metric, and conversely if ρY is a complete metric space
then OρY is a complete metric frame (see [6]), it can be proved that the notion
of CM-fine is also conservative. To prove the following we need a series of results
about CM-fine frames.

Theorem. The CM-fine reflection commutes with completion.

This will follow from the proposition mentioned in the preliminaries if the CM-
fine reflection can be shown to preserve quotients and completeness. It is clear
that all the A-fine reflections preserve the underlying frame. To that end, we first
consider the behaviour relative to quotients; unlike the M-fine frames which do
not preserve quotients ([34]), these frames are well behaved:

Proposition. A quotient of a CM-fine frame is CM-fine.

Proof: Suppose (L, µ) is CM-fine and consider any quotient h : (L, µ)։ (N, δ).
Let f : (M, ρ) −→ (N, δ) be a uniform map with (M, ρ) complete metric. Then
(M, ρ) is the closed quotient of a projective metric frame ([34]), say (P, υ):

(L, µ)
h // // (N, δ)

(P, υ)
g

closed
// //

fg

OO�
�

�

(M, ρ)

f

OO

Now f̂ g exists since (P, υ) is projective. Moreover (P, υ) is complete and since

(L, µ) is CM-fine, f̂ g remains uniform when P has the fine uniformity. But g

closed implies that g : (P, αP ) −→ (M, αM ) is a uniform quotient, and hence
f : (M, αM ) −→ (N, δ) is also uniform. �

Proposition. The CM-fine reflection preserves quotients.

Proof: Consider any quotient h : (L, µ)։ (N, δ). It suffices to check the result
only for those covers which come from a complete metric frame. Take any such
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cover A of N with f [B] ≤ A for uniform f : (M, ρ) −→ (N, δ) and B a cover of
(M, ρ), a complete metric frame. Consider the following diagram:

(P, ρ)
g

closed
// //

wwppp
pp

p fg ��?
?

?
?

?
?

(M, ρ)

wwoooooo

f

��<
<

<
<

<
<

<
<

<
<

<

(P, αP )
g // //fg

��=
=

=
=

=
=

(M, αM )

(L, µ)
h // //

wwoooooo
(N, δ)

xxqqqqq

(L, mcµ)
h // (N, mcδ)

Since g is a closed quotient it remains a uniform quotient relative to the fine

uniformities. Hence there exists a coverC of P with g[C] ≤ B. Now f̂ g exists since

P is projective, but projective frames are complete, and hence f̂ g : (P, αP ) −→

(L, mcµ) is uniform. Thus f̂ g[C] ∈ mcµ. The result follows since h ◦ f̂ g[C] =
f ◦ g[C] ≤ f [B] ≤ A. �

To complete the proof of the theorem of this section, it remains to show that
completeness is preserved by this reflection. In fact, more is true:

Proposition. If (L, µ) is CM-fine then so is C(L, µ). Furthermore, if (L, µ) is
complete then so is (L, mcµ).

Proof: Suppose (L, µ) is CM-fine and consider any uniform map f : (M, ρ) −→
C((L, µ)) with (M, ρ) complete metric. Then the composite:

(M, ρ)
f // C((L, µ))

γL // // (L, µ)

is uniform, and thus so is (M, αM )
γL◦f
−→ (L, µ). Since (M, ρ) is complete, so is

(M, αM ), and hence this map factors through the completion of (L, µ). That is,

(M, αM )
f
−→ C((L, µ)) is uniform.

Conversely, suppose (L, µ) is complete and consider the following diagram:

C((L, µ))
≃ // //

��

(L, µ)

��
C(L, mcµ) // // (L, mcµ)

Since C(L, mcµ) is CM-fine it follows that C(L, mcµ) ∼= (L, mcµ). �
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Subfine and CM-fine frames.
We saw earlier that the subfine frames could be described in terms of A-fine

frames; namely they are precisely the P-fine frames. Thus it is not surprising
that the subfine frames form a reflective subcategory. This reflection, however,
was defined independently from the notion of A-fineness [34]. It is also shown
that for complete metric frames, the subfine reflection is the fine uniformity, and
so we can prove the following:

Proposition. If (L, µ) is subfine then it is CM-fine.

The converse of this is not true in general; however, when restricting to sepa-
rable uniform frames, these two subcategories are equivalent:

Proposition. For a separable uniform frame (L, µ), (L, µ) is CM-fine iff it is
subfine.

Proof: We need only prove the one direction: suppose (L, µ) is separable and
CM-fine. The separable uniform frames are generated by the separable metric
frames, that is, SepUniFrm = Proj [eMFrm], so by taking the completion of
each metric frame, µ can be thought of as “generated” by a family F of uniform
maps f : (M, ρ)f −→ (L, µ) with (M, ρ) a complete separable metric frame.
Let (K, κ) =

⊕
f∈F (M, ρ)f and then the induced map h : (K, κ) −→ (L, µ) is

a uniform quotient. It will be shown that h : (K, αK) −→ (L, µ) is uniform,
and hence (L, µ) is subfine. It suffices to show that h ◦ g is uniform whenever
g : (M, ρ) −→ (K, αK) is uniform for (M, ρ) complete metric. So take any
uniform g : (M, ρ) −→ (K, αK) with (M, ρ) complete metric. By the frame
version of Gleason’s Theorem, g factors through a countable subcoproduct:

(M, ρ)
g //

ḡ
%%LLLLLLLLLLLL

(K, αK)
h // (L, µ)

⊕
n(M, ρ)fn

e

88qqqqqqqqqqqq

Thus h ◦ e :
⊕

n(M, ρ)fn
−→ (L, µ) is uniform. Since

⊕
n(M, ρ)fn

is complete
metric, and (L, µ) is CM-fine, it follows that h ◦ e : α(

⊕
n(M, ρ)fn

) −→ (L, µ) is
uniform. Clearly ḡ : (M, ρ) −→ α(

⊕
n(M, ρ)fn

) is uniform, and thus so is h◦e◦ ḡ.
Hence h ◦ g is uniform. �

CM-fine versus M-fine.
As mentioned,M-fine frames are obviously CM-fine, and mcµ ⊆ mµ for any

uniformity µ. But a natural question is whether anything more can be said about
their relationship. We first prove a technical lemma which gives two cases when
these reflections coincide:
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Lemma. If (L, µ) is either a coproduct of complete metric frames or a projective
uniform frame then mcµ = mµ.

Proof: Suppose (L, µ) =
⊕

i∈I(Mi, ρi) with the (Mi, ρi) complete metric frames.
It suffices to show that µ̃ ⊆ mc(µ). That is, if any f : (M, ρ) −→ (L, µ) is uniform
with (M, ρ) metric, then so is f : (M, αM ) −→ (L, mcµ). Take any such map f ,
then applying the locallic Gleason’s theorem gives the following factorisation:

(M, ρ)
f //

g
%%LLLLLLLLLLLL
(L, µ)

⊕
i∈I(Mi, ρi)

⊕
n(Mn, ρn)

e

?�

OO

where
⊕

n(Mn, ρn) is a countable subcoproduct, and thus is a complete metric
frame. Therefore α(

⊕
n(Mn, ρn)) = mc(

⊕
n(Mn, ρn)). It follows that

(M, αM )
g // α(

⊕
n(Mn, ρn)) mc(

⊕
n(Mn, ρn))

e // (L, mcµ)

is uniform. That is, f : (M, αM ) −→ (L, mcµ) is uniform.
Now suppose (L, µ) is a projective uniform frame, then consider (L, µ) as a

quotient of a coproduct of complete metric frames, say q : (Z, υ) ։ (L, µ). By
projectivity there is a uniform map h : (L, µ) −→ (Z, υ) such that h ◦ e = idL,
and hence

(L, mµ)
h // (Z, mυ) (Z, mcυ)

e // (L, mcµ)

is uniform. So mµ ⊆ mcµ. �

Take any CM-fine frame (L, µ) and consider it as a quotient of a coproduct of
complete metric frames (Z, υ). Since the CM-fine reflection preserves quotients,
and µ = mcµ, (L, µ) is a quotient of (Z, mcυ). By the above result mcυ = mυ so
(L, µ) is a quotient of anM-fine frame. Using a similar argument to the one used
in the proof that the CM-fine reflection preserves quotients, it can be shown that
any quotient of aM-fine frame is CM-fine.
Thus we have the following:

Theorem. CM-fine frames are precisely the quotients of M-fine frames.

Interactions with topological properties

The Lindelöf property.
We recall that a frame is Lindelöf if every cover has a countable subcover. For

regular frames, it has been shown that Lindelöf is equivalent to being complete
in the separable fine uniformity. This is the frame version of one of Shirota’s
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theorems, and shows that in the frame setting, Lindelöf frames are the appropriate
analogue to realcompact spaces ([35]). We first note that for any regular Lindelöf
frame L, given any compatible uniformity µ on L, we have that Cozu(L, µ) =
CozL. Thus theM-fine reflection of a Lindelöf uniform frame is always complete.
This follows from the lemma below, and Shirota’s theorem:

Lemma. If L is Lindelöf then mµ = eα for any compatible µ.

Proof: L Lindelöf implies that (L, µ) is separable for any compatible uniformity
µ, that is µ = eµ. Therefore, mµ = meµ = αeµ = αµ. Since αµ has a basis of all
the countable covers of Cozu(L, µ), and by the above lemma, Cozu(L, µ) = CozL,
it follows that αµ = eα. �

In fact, the Lindelöf frames can be characterised in terms of completeness and
M-fineness, an extension of the Shirota theorem for frames:

Proposition. The following are equivalent for any completely regular frame L:

(i) L is complete in each of its separableM-fine uniformities;
(ii) L is Lindelöf.

Proof: Suppose L is Lindelöf. Then mµ = eα for each compatible uniformity
µ, and thus µ = mµ = eα for each separableM-fine µ, and so (L, µ) is complete.
Conversely, since eα is separable M-fine, (L, eα) is complete, and by Shirota’s
theorem, L is Lindelöf. �

Pseudocompactness.
A frame L is said to be pseudocompact if each frame map from OR to L

is bounded. In the case of L being completely regular, this is equivalent to
CozL being compact ([4]). Banaschewski and Pultr [7] show that a frame is
pseudocompact iff every normal cover has a finite normal refinement, but their
proof of this result actually shows the following:

Lemma. For completely regular L, L is pseudocompact iff αL = pαL iff all

compatible uniformities are precompact.

The final proposition lists characterisations of pseudocompactness. Each con-
dition depends on one or more of the properties of compactness, M-fineness,
precompactness and coz-codensity. We recall that βL −→ L denotes the Stone-
Čech compactification (compact coreflection) of a completely regular frame ([5]),
and βσL −→ L denotes the Stone-Čech compactification (compact coreflection)
of a regular σ-frame ([32]):

Proposition. For a completely regular frame L, the following are equivalent:

(1) each of L’s precompact uniformities isM-fine (equivalently, cozfine);
(2) (L, pα) isM-fine (equivalently, cozfine);
(3) βL ։ L is coz codense;

(4) every compactification of L is coz codense;
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(5) if M ։ L is dense and υ is a compatible uniformity on M , then (M, υ)
isM-fine;

(6) L is pseudocompact.

Proof: (1)⇒ (2) and (4)⇒ (3) are trivial.
(2)⇒ (6): Take any countable cozero cover A of L. Then A ∈ pα since (L, pα) is
cozfine. But pα is precompact so there exists a finite uniform cover B ≤ A. And
this identifies a finite subcover of A.
(6)⇒ (2): Suppose L is pseudocompact, then αL = pαL. The result follows since
(L, αL) is alwaysM-fine.
(3)⇒ (2): If βL ։ L is coz codense then so is C(L, pαL)։ (L, pαL). Apply the
cozfine reflection: since βL = C(L, pαL) is compact it has a unique uniformity,
and so is cozfine. Thus C(L, pαL) ։ (L, αpαL

) is also a quotient, and hence
αpαL

= pαL, and so (L, pαL) isM-fine.
(3)⇒ (4): This follows immediately from the fact that every compactification of
L can be thought of as a subframe of βL.
(5)⇒ (1): This follows directly by taking M = L.
(6) ⇒ (3): Suppose L is pseudocompact, that is CozL is compact. Now con-
sider βL ։ L. Applying Coz gives: CozβL ։ CozL. But CozβL = βσCozL,
and since CozL is compact, CozL = βσCozL. Thus the compactification is coz
codense.
(4) ⇒ (1): Let (L, µ) be a precompact uniform frame. Then, by assumption,
any compactification ρL : S(L, µ) ։ (L, µ) is coz codense, that is CozS(L, µ) ∼=
Coz(L, µ). Now take any countable cover A of Coz(L, µ), then it is isomorphic to
a cover A′ of CozS(L, µ). Since S(L, µ) is fine, henceM-fine, A′ is uniform, and
thus so is ρL(A

′). But ρL(A
′) = A, so A ∈ µ which shows that (L, µ) is cozfine.

(6) ⇒ (5): Suppose L is pseudocompact. That is, all uniformities are pre-
compact. Let h : M ։ L be dense, then M is pseudocompact, so β(M, υ) =
C(M, υ)։ (M, υ)։ (L, h[υ]) is dense, and hence by (4), it is coz codense. Thus
C(M, υ)։ (M, υ) is coz codense, and since (4)⇒ (1), (M, υ) isM-fine. �
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