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Existence of nonzero nonnegative solutions

of semilinear equations at resonance

Michal Fečkan

Abstract. The existence of nonzero nonnegative solutions are established for semilinear
equations at resonance with the zero solution and possessing at most linear growth.
Applications are given to nonlinear boundary value problems of ordinary differential
equations.
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Introduction

The existence of solutions in convex sets for abstract semilinear equations at res-
onance are recently studied by Gaines and Santanilla [1], Nieto [2], Przeradzki [3]
and Santanilla [4]. Like in these papers, we consider the operator equation

Lu = N(u), u ∈ C,

where C is a cone, L : domL ⊂ X → Y is a Fredholm operator of index zero,
N : X → Y is continuous, nonlinear satisfying a compact property with respect
to L, and X, Y are Banach spaces. We note that C is a cone provided that C is
a nonempty closed convex subset of X such that αC ⊂ C ∀α ≥ 0. Hence 0 ∈ C.
We suppose that C 6= X . Results of [1]–[4] imply the existence of a solution for
the above equation in C.
In this paper, we assume N(0) = 0. Consequently, Lu = N(u) has always a

trivial solution u = 0 in C. We derive results giving another (nonzero) solutions
of Lu = N(u) belonging to a cone shell of C (see a set Ω below). We use the
alternative method like in [4] together with the retraction method. To illustrate
our theory, we show nonzero nonnegative solutions for boundary value problems
of higher order ordinary differential equations motivated by [1]–[4].

Notation and main results

In this paper, L is a Fredholm operator of index zero. It is well known that
there are projections P : X → X and Q : Y → Y such that imP = kerL and
kerQ = imL. We denote by Kp : imL → domL ∩ kerP the partial inverse of L.
We assume that 0 < ‖Kp(I − Q)‖ < ∞ and Kp(I − Q) maps bounded sets into
relative compact ones.
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Furthermore, following [4], we suppose the existence of a continuous bilinear
form 〈·, ·〉 on Y × X such that

z ∈ imL if and only if 〈z, u0〉 = 0

for any u0 ∈ kerL. Let {v1, v2, · · · , vn} be a basis of kerL. We define the mapping
J : imQ → kerL as follows

z →
n

∑

i=1

〈z, vi〉vi.

It is clear that J is an isomorphism satisfying 〈J−1u0, u0〉 > 0 if u0 6= 0.
The next result is an extension of [4, Theorem 1] for showing the existence of

a nonzero solution of Lu = N(u) in C when N(0) = 0.

Theorem 1. Suppose that the following conditions are satisfied.

(i) There are constants c1 > 0 and 0 ≤ c2 < ‖Kp(I − Q)‖−1 such that

|N(u)| ≤ c1 + c2|u|, ∀u ∈ C.

(ii) There is R > 0 such that

〈QN(u0 + u1), u0〉 ≤ 0

for all u = u0 + u1 ∈ C, where u0 ∈ kerL, |u0| = R, u1 ∈ kerP , and

|u1| ≤ ρ = (c1 + c2R)/
(

‖Kp(I − Q)‖−1 − c2
)

.

(iii) There is 0 < r < R such that |u| ≤ r implies |u0| ≤ R and |u1| ≤ ρ, and

u 6= λ
(

P + JQN +Kp(I − Q)N
)

(u)

for all u ∈ C, |u| = r and λ > 1.

(iv)
(

P + JQN +Kp(I − Q)N
)

(Ω) ⊂ C \ {0}, where

Ω =
{

u = u0 + u1 ∈ C : |u| ≥ r, |u0| ≤ R, |u1| ≤ ρ
}

.

Then Lu = N(u) has a solution u ∈ Ω.
Proof: We take the retraction σ : C \ {0} → Ω given by

σ(u) =







































u for u ∈ Ω
r
|u|

u for 0 < |u| ≤ r

R
|u0|

u for |u0| ≥ R, |u1| ≤ ρ

min
{

R
|u0|

, ρ
|u1|

}

u for |u0| ≥ R, |u1| ≥ ρ

ρ
|u1|

u for |u0| ≤ R, |u1| ≥ ρ.
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According to (iv), we can consider the mapping M1 = σM2 : Ω→ Ω, where
M2 = P + JQN +Kp(I − Q)N.

It is well known that M1 has a fixed point u ∈ Ω. We show that u is also a
solution of Lu = N(u). By decomposing

M2(u) =M2(u)0 +M2(u)1, M2(u)0 ∈ kerL, M2(u)1 ∈ kerP,

we have the following possibilities:

1. If M2(u) ∈ Ω then u = σ(M2(u)) =M2(u) and so Lu = N(u).

2. If 0 < |M2(u)| < r then u = r
|M2(u)|

M2(u) and hence u = λM2(u) for

λ = r
|M2(u)|

> 1 and |u| = r. Contradiction to (iii).

3. If |M2(u)0| ≥ R and |M2(u)1| ≤ ρ then R
|M2(u)0|

M2(u) = u. If λ =

R
|M2(u)0|

=1 then we have the case 1. Hence for λ = R
|M2(u)0|

< 1, we have

u0 = λ
(

Pu+ JQN(u)
)

, |u1| ≤ ρ, |u0| = R.

This implies
0 < (1− λ)〈J−1u0, u0〉 = λ〈QN(u), u0〉 ≤ 0,

a contradiction to (ii).

4. If |M2(u)0| ≥ R and |M2(u)1| ≥ ρ then

λM2(u) = u, λ = min
{ R

|M2(u)0|
,

ρ

|M2(u)1|
}

, u ∈ Ω.

Hence either |u0| = R, |u1| ≤ ρ or |u0| ≤ R, |u1| = ρ. When λ = 1 then we
have the case 1. For |u0| = R, |u1| ≤ ρ, λ < 1 we have the case 3. If |u0| ≤ R,
|u1| = ρ, λ < 1 then

ρ = |u1| = λ|Kp(I − Q)N(u)|
≤ λ‖Kp(I − Q)‖(c1 + c2|u|)
≤ λ‖Kp(I − Q)‖(c1 + c2R+ c2ρ)

< c2‖Kp(I − Q)‖ρ+ (c1 + c2R)‖Kp(I − Q)‖ = ρ,

a contradiction.

5. If |M2(u)0| ≤ R and |M2(u)1| ≥ ρ then u = λM2(u) with λ = ρ
|M2(u)1|

≤ 1.
When λ = 1 then we have the case 1. If λ < 1 then |u0| ≤ R, |u1| = ρ and like in
the end of the case 4, we arrive at a contradiction.

Summarizing we see that only the case 1 is valid and the proof is finished. �
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Proposition 2. (a) Assume that there is r > 0 such that

〈QN(u0 + u1), u0〉 ≥ 0
for all u = u0 + u1 ∈ C, u0 ∈ kerL, u1 ∈ kerP and |u| = r. Then

u 6= λ
(

P + JQN +Kp(I − Q)N
)

(u)

for all u ∈ C, |u| = r and λ > 1 provided that it holds

u ∈ C ∩ kerP =⇒ u = 0.

(b) Assume that |N(u)| ≤ c1 ∀u ∈ C and for any K1 > 0 there is K2 > 0 such
that

〈QN(u0 + u1), u0〉 ≤ 0
for all u = u0 + u1 ∈ C, u0 ∈ kerL, u1 ∈ kerP and |u0| = K2, |u1| ≤ K1. Then
(i) and (ii) of Theorem 1 hold.

Proof: To prove (a), we assume

u = λ
(

P + JQN +Kp(I − Q)N
)

(u)

for some u ∈ C, |u| = r and some λ > 1. Then

u0 = λu0 + JQN(u)

0 ≤ 〈QN(u0 + u1), u0〉 = (1− λ)〈J−1u0, u0〉 ≤ 0.
Hence 〈J−1u0, u0〉 = 0 and so u0 = 0. By using u ∈ C ∩ kerP , we obtain u = 0
which contradicts to |u| = r > 0. The assertion (b) is clear. We note that (b) is
a certain Landesman-Lazer type condition (see [3]). �

Corollary 3. Suppose that kerL = {0} and N maps bounded sets of C into
bounded ones of Y . If there are r1,2 > 0 and R > r1 such that

Lu = λ(N(u) + ǫu), λ < 1, 0 < ǫ ≤ r2 =⇒ |u| 6= R

Lu = λ(N(u) + ǫu), λ > 1, 0 < ǫ ≤ r2 =⇒ |u| 6= r1

L−1(N(u) + ǫu) ∈ C \ {0} ∀u ∈ C \ {0}, ∀ 0 < ǫ ≤ r2,

then Lu = N(u) has a nonzero solution u ∈ C satisfying r1 ≤ |u| ≤ R.

Proof: Let us fix r2 ≥ ǫ > 0. The proof of Theorem 1 is applicable when M2 is
replaced by u → L−1(N(u) + ǫu), Ω is replaced by the set

Γ =
{

u ∈ C : r1 ≤ |u| ≤ R
}

,

and the retraction σ is replaced by the retraction τ : C \ {0} → Γ given as follows

τ(u) =











u for u ∈ Γ
u
|u|

r for 0 < |u| ≤ r

u
|u|

R for |u| ≥ R.

So we have uǫ ∈ C, r1 ≤ |uǫ| ≤ R for ǫ > 0 sufficiently small such that Luǫ =
N(uǫ) + ǫuǫ. By passing to the limit ǫ → 0+ and using the compactness of L−1,
we arrive at the desired solution of Lu = N(u). �
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Examples

We consider the following boundary value problem

(1) Lu = f(x, u),

where f : [0, 1] × [0,∞) → R is continuous and L represents a linear boundary
value problem for an ordinary differential equation on [0, 1] with continuous co-
efficients. We assume that there is ω ∈ C([0, 1], [0,∞)) such that ω is nonzero
almost everywhere on [0, 1] and

(A1)

kerL = Rω,

1
∫

0

ω2(s) ds = 1,

h ∈ imL ⇐⇒
1

∫

0

h(s)ω(s) ds = 0.

Moreover, we suppose that there is H ∈ C([0, 1]× [0, 1], R) such that

Lu = h ∈ imL,

1
∫

0

u(s)ω(s) ds = 0 ⇐⇒ u(x) =

1
∫

0

H(x, t)h(t) dt.

We put

X = Y = C([0, 1], R),

Lu = Lu, N(u) = f(·, u(·)),

〈u, z〉 = β

1
∫

0

u(x)z(x) dx, β > 0 is a constant,

C =
{

u ∈ X : u(·) ≥ 0
}

.

Since (A1) holds, we take

(Qu)(x) = (Pu)(x) = ω(x)

1
∫

0

u(s)ω(s) ds, J = βI.

Furthermore, we have

(Kp(I − Q)z)(x) =

1
∫

0

G(x, s)z(s) ds,
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where

G(x, s) = H(x, s)− ω(s)

1
∫

0

H(x, t)ω(t) dt.

So we arrive at

Pu(x) + JQN(u)(x) +Kp(I − Q)N(u)(x) =

ω(x)

1
∫

0

u(s)ω(s) ds+ βω(x)

1
∫

0

f(s, u(s))ω(s) ds

+

1
∫

0

G(x, s)f(s, u(s)) ds = ω(x)

1
∫

0

u(s)ω(s) ds

+

1
∫

0

(

βω(x)ω(s) +G(x, s)
)

f(s, u(s)) ds.

By assuming

K1ω(x)ω(s) ≥ −G(x, s) ≥ K2ω(x)ω(s)(A2)

∀ (x, s) ∈ [0, 1]× [0, 1]

for constants K1 > 0 > K2, the condition (iv) holds for β = K1 provided that

(A3) f(s, 0) ≥ 0, f(s, u) >
−u

K1 − K2
∀ (s, u) ∈ [0, 1]× (0,∞).

We also suppose that

(A4) sup
[0,1]×[0,∞)

|f(·, ·)| < ∞.

Then (i) holds with c2 = 0.
Since

〈QN(u0 + u1), u0〉 = β

1
∫

0

f(s, u(s))ω(s) ds

1
∫

0

u(s)ω(s) ds,

by assuming

(A5) f(s, u) ≥ 0 ∀ s ∈ [0, 1], ∀ 0 ≤ u ≤ r

for a constant r > 0, the condition (a) of Proposition 2 is valid.
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Finally, by supposing the Landesman-Lazer type condition

(A6) lim sup
u→∞

1
∫

0

f(s, u)ω(s) ds < 0

uniformly with respect to s ∈ [0, 1], it is well known ([3]) that the condition (b)
of Proposition 2 holds as well.
Summarizing, Theorem 1 and Proposition 2 give the following result:

(1) has a nonzero nonnegative solution provided that (A1)–(A6) are satisfied.

But it is worth to point out that if (A1), (A2), (A4)–(A6) hold then by taking
— if it is necessary— another sufficiently large constantsK1, −K2, the conditions
(A1)–(A6) are satisfied. Consequently, we obtain the following theorem.

Theorem 4. (1) has a nonzero nonnegative solution provided that (A1), (A2),
(A4)–(A6) are satisfied.

When f has a linear growth in u, we have like in [4] the following result.

Theorem 5. (1) has a nonzero nonnegative solution provided that (A1), (A2),
(A3), (A5) hold and moreover, there are constants a > 0 > b such that

(A7) f(s, u) ≤ bu+ a ∀ (s, u) ∈ [0, 1]× [0,∞),

and as well as, it holds

(A8) K1 − K2 > max{K1,−K2} maxω(·)
1

∫

0

ω(s) ds.

Proof: (A2) implies

‖Kp(I − Q)‖ ≤ max{K1,−K2} maxω(·)
1

∫

0

ω(s) ds.

(A3) and (A7) give − 1
K1−K2

≤ b < 0. Consequently by (A8), (i) holds with

c2 =
1

K1−K2
.

We verify (ii) by putting R = −a
b

1
∫

0
ω(s) ds, since for

u(x) = u0(x) + u1(x),

1
∫

0

u1(s)ω(s) ds = 0, u0(x) = Rω(x),
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it holds

〈QN(u0 + u1), u0〉 = βR

1
∫

0

f(s, u(s))ω(s) ds

≤ βR

1
∫

0

(

a+ bu(s)
)

ω(s) ds = 0.

Consequently, (ii) holds and Theorem 1 is applicable. �

By rewriting (1) in the form

(2) −Lu = −f(x, u),

and applying Theorems 4, 5 to (2), the conditions (A3) and (A5)–(A7) are re-
placed by

f(s, 0) ≤ 0, f(s, u) <
u

K1 − K2
∀ (s, u) ∈ [0, 1]× (0,∞),(A3′)

f(s, u) ≤ 0 ∀ s ∈ [0, 1], ∀ 0 ≤ u ≤ r,(A5′)

lim inf
u→∞

1
∫

0

f(s, u)ω(s) ds > 0(A6′)

uniformly with respect to s ∈ [0, 1],

there are constants b > 0 > a such that(A7′)

f(s, u) ≥ bu+ a ∀ (s, u) ∈ [0, 1]× [0,∞),

respectively.

Theorem 6. (1) has a nonzero nonnegative solution provided that either (A1),
(A2), (A4), (A5′), (A6′) or (A1), (A2), (A3′), (A5′), (A7′), (A8) hold.

We note that clearly (A2) is satisfied for some constants K1 > 0 > K2 when
ω(·) > 0. So in this case we can construct f satisfying the rest conditions of either
Theorem 4, 5 or 6.
Now we consider

(3)
u′′ = f(x, u),

u(0)− u(1) = u′(0)− u′(1) = 0,

where f : [0, 1]× [0,∞)→ R is continuous.
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Theorem 7. Assume that there are constants R > r > 0 such that either

(A9) f(·, r) ≤ 0 and (A4), (A6′) hold,

or

(A10) f(·, r) ≤ 0 and f(·, R) ≥ 0 hold.

Then (3) has a solution satisfying either u(·) ≥ r in the case (A9), or R ≥ u(·) ≥ r
in the case (A10).

Proof: In the case (A9), we can modify f to f̃ such that f̃ coincides with f on

the set
{

(x, u) : x ∈ [0, 1], r ≤ u
}

, f̃(x, u) < 0 for u < r and lim
u→−∞

f̃(x, u) = −1
uniformly for x ∈ [0, 1].
In the case (A10), we can modify f to f̃ such that f̃ coincides with f on the

set
{

(x, u) : x ∈ [0, 1], r ≤ u ≤ R
}

, f̃(x, u) < 0 for u < r, f̃(x, u) > 0 for u > R

and lim
u→±∞

f̃(x, u) = ±1 uniformly for x ∈ [0, 1].
Then [3, Theorem 4] and [4, Theorems 1 and 5] give in both cases a solution

of the problem

u′′ = f̃(x, u),

u(0)− u(1) = u′(0)− u′(1) = 0.

If u(x0) < r for some x0, then min u = u(z0) < r and

0 ≤ u′′(z0) = f̃(z0, u(z0)) < 0.

This contradiction implies u(·) ≥ r and consequently, u is the desired solution in
the case (A9).
If u(x0) > R for some x0 in the case (A10), then maxu = u(z0) > R and

0 ≥ u′′(z0) = f̃(z0, u(z0)) > 0.

This contradiction implies u(·) ≤ R and consequently, u is the desired solution
also in the case (A10). �

Finally, we consider

(4)
u′′ + f(x, u) = 0,

u(0) = u(π) = 0,

where f : [0, 1]× [0,∞)→ R is continuous and satisfying f(·, 0) = 0.
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Theorem 8. Suppose that there are constants c1 > 0, 0 ≤ c2 < 1 and r > 0
such that

0 ≤ f(x, u) ≤ c1 + c2u ∀ (x, u) ∈ [0, π]× [0,∞)
f(x, u) ≥ u ∀x ∈ [0, π], ∀u ∈ [0, r].

Then (4) has a nonzero nonnegative solution.

Proof: We apply Corollary 3. Clearly kerL = {0} and the inverse of Lu = −u′′

has the form

(L−1z)(x) =

π
∫

0

G(x, s)z(s) ds,

where

G(x, s) =

{

(π − s)x/π 0 ≤ x ≤ s ≤ π

(π − x)s/π 0 ≤ s ≤ z ≤ π.

To show the first assumption of Corollary 3, we consider

(5)
u′′ + λ(f(s, u) + ǫu) = 0, λ < 1,

1− c2
2

> ǫ > 0

u(0) = u(π) = 0, u(·) ≥ 0,

with |u| = R. Let | · |L2 denote the norm of L2(0, 1). The proof of [4, Theorem 7]
gives a constant K1 > 0 such that any solution of (5) satisfies |u|L2 ≤ K1. Then
we have

|u(x)| ≤
π

∫

0

G(x, s)
(

f(s, u(s)) + ǫu(s)
)

ds ≤ π

π
∫

0

(

c1 + (c2 + 1)u(s)
)

ds

≤ π2c1 + 2π

π
∫

0

u(s) ds ≤ π2c1 + 2π
√

π|u|L2 ≤ π2c1 + 2π
√

π K1 = K2.

So |u| is bounded by the constant K2 uniformly for any solution of (5). By taking
R > max{K2, r}, the first assumption of Corollary 3 holds.
To show the second assumption of Corollary 3, we consider

u′′ + λ(f(s, u) + ǫu) = 0, λ > 1,
1− c2
2

> ǫ > 0

u(0) = u(π) = 0, u(·) ≥ 0,

with |u| = r. Then we have

−
π

∫

0

u(s) sin s ds =

π
∫

0

u′′(s) sin s ds = −
π

∫

0

λ(f(s, u(s)) + ǫu(s)) sin s ds.
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Hence

0 =

π
∫

0

(

− u(s) + λ(f(s, u(s)) + ǫu(s))
)

sin s ds

≥
π

∫

0

(

− u(s) + u(s) + ǫu(s)
)

sin s ds = ǫ

π
∫

0

u(s) sin s ds.

This contradiction implies the validity of the second assumption. The third one
is clearly satisfied. �
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