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Some results on sequentially compact extensions

M. Cristina Vipera

Abstract. The class of Hausdorff spaces (or of Tychonoff spaces) which admit a Hausdorff
(respectively Tychonoff) sequentially compact extension has not been characterized. We
give some new conditions, in particular, we prove that every Tychonoff locally sequen-
tially compact space has a Tychonoff one-point sequentially compact extension. We also
give some results about extension of functions and about lattice properties of the family
of all minimal sequentially compact extensions of a given space.

Keywords: sequentially compact extension, locally sequentially compact space, exten-
sion of functions

Classification: 54D35, 54C20, 54D80

Introduction

It is well known that complete regularity is a necessary and sufficient condition
for a space to admit a Hausdorff compact extension, that is, a compactification.
However, it is not either necessary or sufficient for the existence of a Hausdorff
sequentially compact extension (see [E, Example 3.10.B] and [FV, Proposition 1.2,
Example 3]. It is still an open problem to characterize Hausdorff spaces which
have a Hausdorff sequentially compact extension. Also, a Hausdorff sequentially
compact extension of a Tychonoff space can fail to be Tychonoff.
Some Tychonoff spaces obviously have a sequentially compact compactification,

hence a normal sequentially compact extension: (i) spaces of weight less than s;
(ii) locally compact spaces of cardinality less than 2t; (iii) subspaces of LOTS.
(The cardinals t and s satisfy ω1 ≤ t ≤ s ≤ c; see [vD, Sections 3, 6]).
Moreover, it was proved that every metrizable space has a normal first-

countable sequentially compact extension ([N]). In [FV] it is proved that every
P -space has a Hausdorff (nonregular) sequentially compact extension.
A Hausdorff space is said to be almost locally sequentially compact (ALSC)

if every point has a closed sequentially compact neighborhood. A regular ALSC
space is locally sequentially compact (LSC), that is, every point has a local base
consisting of closed sequentially compact sets. If X is ALSC, then we can define
a Hausdorff one-point sequentially compact extension, denoted by oX in [FV],
in which the open neighborhoods of the new point are the complements of the
closed sequentially compact subsets of X . In general oX is not the only one-point
sequentially compact extension of X .
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A sequential compactification of X is a sequentially compact extension of X
which is minimal, that is, does not properly contain any sequentially compact
extension of X . Every sequentially compact extension of X contains a sequential
compactification of X ([FV]). We denote sequential compactifications of X with
symbols like aX , bX, . . .
We compare sequential compactifications like compactifications, that is, we

say that aX ≥ bX if there is a continuous map pab from aX to bX which is the
identity on X . The minimality of bX implies that pab is surjective. In general,
pab is not a quotient map.
The partial ordered set of all sequential compactifications of X (up to equiv-

alence) is denoted by SK(X). We denote by SKT (X) the subfamily of SK(X)
consisting of Tychonoff sequential compactifications of X . (As we have already
remarked, those sets can be empty.)
In the first section of this paper we observe that, for Tychonoff LSC spaces,

oX can fail to be Tychonoff. However, we prove that every Tychonoff LSC space
has a Tychonoff one-point sequentially compact extension. This is obtained as
consequence of a general theorem about locally bounded spaces. We also give some
results about the existence of strict (Hausdorff or Tychonoff) sequentially compact
extensions, where “strict” means that closed sequentially compact subsets of X
remain closed.
In Section 2 we prove that, for every bounded continuous real-valued function f

defined on a Tychonoff LSC space, there exists a Tychonoff sequentially compact
extension ofX to which f extends. We deduce some lattice results about SKT (X)
and SK(X).
In the last section we give some new conditions for a space to have Hausdorff

sequentially compact extensions. We also give some more results about extension
of functions.
All spaces will be Hausdorff, unless otherwise specified, and “extension of X”

always means “Hausdorff extension of X in which X is dense”. As usual, we
denote by βX the Stone-Čech compactification of X and by C∗(X) the ring of
bounded continuous real-valued function on X .

1. One-point Tychonoff extensions

Let X be a Tychonoff LSC space. The following example shows that the one-
point extension oX can fail to be Tychonoff.

Example. Let X be the Tychonoff plank ((ω1 + 1) × (ω + 1)) \ {(ω1, ω)}. We
know that βX is the only nontrivial Tychonoff extension of X . X is clearly LSC,
and the set ω1 × {ω} is closed in X and sequentially compact, then it is closed
in oX . This implies that oX 6= βX , so that oX is not Tychonoff. Note that βX
is sequentially compact, hence X has a Tychonoff one-point sequentially compact
extension (but no strict Tychonoff sequentially compact extension).

We will prove that every Tychonoff LSC space has a Tychonoff (one-point)
sequentially compact extension. This will be obtained as a corollary of a more
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general result involving the concept of boundedness.

Definition ([H]). A boundedness on a space X is a family FX of subsets of X
which is closed with respect to subsets and finite unions. We say that a subset
of X is bounded (with respect to FX) if it is in FX , unbounded otherwise. FX is
said to be closed if, for F ⊂ X , F ∈ FX implies F ∈ FX . We will say that FX

is open if every bounded set is contained in an open bounded set.
We say that X is locally bounded with respect to a boundedness FX if every
x ∈ X has a neighborhood V ∈ FX .

WheneverX is locally bounded and unbounded with respect to a closed bound-
edness FX , we can construct a Hausdorff one-point extension such that the open
neighborhoods of the new point p are of the form {p} ∪ U , where U is open in
X and X \ U is in FX . We denote that extension by o(FX). Every one-point
Hausdorff extension is of this form.
Clearly, ALSC means locally bounded with respect to the closed boundedness

SCX = {A ⊂ X | A is sequentially compact}

and oX = o(SCX).
A one-point extension o(FX) is sequentially compact if and only if FX ⊂ SCX .

Theorem 1.1. Let FX be a closed boundedness on X and let X be locally
bounded and unbounded. Let X be T3 (T4). Then o(FX ) = X ∪ {p} is T3
(respectively T4) if and only if FX is open.

Proof: First suppose X is T3. Then every point of X has a local base of
closed members of FX , hence, in o(FX ), every point of X has base of closed
neighborhoods. Clearly, the condition that every F = ClXF ∈ FX is contained
in an open W ∈ FX (so that ClXW is also in FX) is equivalent to the condition
that every open neighborhood of p in o(FX) contains a closed neighborhood.
Now, let X be T4 and suppose FX is open. Let A, B be disjoint closed subsets
of o(FX). Without loss of generality we assume that p /∈ A. Let V be an open
subset of X such that A ⊂ V and ClXV ∩B = ∅. Since A ∈ FX , one has A ⊂ U ,
where U ∈ FX and U is open. Then G = ClXU ∩ V ∈ FX and G∩B = ∅. Then
U ∩V and o(FX) \G are disjoint open subsets of o(FX) which contain A and B,
respectively. The converse follows from the first part. �

Corollary 1.2. Let X be a T3 (T4) LSC space. Then oX is T3 (respectively
T4) if and only if every closed sequentially compact subset of X has a closed
sequentially compact neighborhood.

Let FX be a closed boundedness. Put

F ′
X = {F ⊂ X | ∃f ∈ C(X, I), a ∈ (0, 1) : F ⊂ f−1([0, a))

and f−1([0, 1)) ∈ FX},

where I be the unit interval. Note that F ′
X ⊂ FX .
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Theorem 1.3. Let X be a Tychonoff space and suppose X is locally bounded
and unbounded with respect to a closed boundedness FX . Then F ′

X is an open

and closed boundedness and X is locally bounded with respect to F ′
X . Moreover

o(F ′
X) is Tychonoff. If X is T4, then o(F

′
X) is also T4.

Proof: To prove that F ′
X is a closed boundedness we need only to prove that it

is closed with respect to finite unions. If F and G are in F ′
X , then the number a

in the definition of F ′
X can be supposed to be the same for F and G. Then our

claim is proved by the equation

f−1([0, a)) ∪ g−1([0, a)) = (f ∧ g)−1([0, a)).

Notice that all the sets of the form f−1([0, a)) and f−1([0, a]), where a < 1 and
f−1([0, 1)) ∈ FX , are in F ′

X . This proves that F
′
X is open. Now let U be a

neighborhood of x ∈ X . Then U contains an open neighborhood V of x which
is in FX . Let f ∈ C(X, I) such that f(x) = 0 and f−1([0, 1)) ⊂ V . For any
a ∈ (0, 1), f−1([0, a)) is a neighborhood of x which is in F ′

X . Now we prove

that o(F ′
X) = X ∪ {p} is Tychonoff. Let A be a closed subset of X ∪ {p} and

suppose x /∈ A. First let x 6= p, so that x has open neighborhood U ∈ F ′
X

such that U ⊂ X \ A. Let f ∈ C(X, I) be such f(x) = 0, and f(X \ U) = 1.
Since o(F ′

X ) \U is a (closed) neighborhood of p containing A, then we can define

f̃ : o(F ′
X )→ I which extends f and satisfies f̃(A) = 1. Now, suppose x = p /∈ A.

Then A ∈ F ′
X , hence there is f ∈ C(X, I) such that, A ⊂ f−1([0, a)) and for

b ∈ (a, 1), f−1([0, b]) ∈ F ′
X . Then (f

−1([b, 1])∪{p} ⊃ o(F ′
X)\f−1([0, b]) which is

a neighborhood of p. Take g = (f ∨ a) ∧ b. Then g(A) = a and g(f−1([b, 1)) = b.
Then we can extend g to o(F ′

X ) and we obtain a map g̃ such that g̃(A) = a and

g̃(p) = b. This proves that o(F ′
X) is Tychonoff. The last claim easily follows,

using Theorem 1.1. �

The definition of F ′
X was inspired by a particular boundedness defined in [CG].

Corollary 1.4. If X is a Tychonoff (T4) LSC space and X is not sequentially
compact, then there exists a one-point sequentially compact extension of X which
is Tychonoff (respectively T4).

Proof: We can use the above theorem, taking FX = SCX . �

Using suitable boundednesses, we can deduce analogous results for different
kinds of extensions.

We recall that a sequentially compact extension (in particular, a sequential
compactification) Y of X is said to be strict if every closed sequentially compact
subset of X is closed in Y .

Remark. If X is paracompact, then every sequentially compact extension of X
is strict. In fact, a closed sequentially compact subset of a paracompact space is
both paracompact and countably compact, hence compact.
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From Theorem 1.3 we can deduce an equivalent condition for a Tychonoff LSC
space to admit a strict Tychonoff sequentially compact extension.
Let FX be any closed boundedness in a Tychonoff space X . If X is locally

bounded and o(FX) is Tychonoff then, clearly, one has F
′
X = FX . Conversely, if

F ′
X = FX and FX contains all singletons, then X is locally bounded with respect
to FX and o(FX ) is Tychonoff, by Theorem 1.3. Then one has

Theorem 1.5. For a Tychonoff space X the following are equivalent:

(i) SC′X = SCX ;
(ii) X has a one-point strict Tychonoff sequentially compact extension (equiv-
alently, oX is Tychonoff );

(iii) X is LSC and admits a strict sequentially compact extension.

Proof: The equivalence of (i) and (ii) is proved by the previous remarks; (ii)
and (iii) are equivalent by [FV, 1.6 and 2.8]. �

The example of the Tychonoff plank can be generalized as follows:

Proposition 1.6. If X is almost compact and is not sequentially compact, then
X has a strict Tychonoff sequentially compact extension if and only if, for closed
subsets of X , compactness is equivalent to sequential compactness.

For any Tychonoff space, we have the following necessary condition:

Proposition 1.7. If a Tychonoff space X admits a strict Tychonoff sequentially
compact extension, then every infinite subset of X which contains no nontrivial
convergent sequence has a countable closed discrete subset D which is functionally
separated from every closed sequentially compact subset F of X with F ∩D = ∅.

Proof: Let Y be a strict sequential compactification of X and let A be a subset
of X which does not contain any nontrivial convergent sequence. Then A contains
D = {xn} with xn → y ∈ Y \ X . Clearly D is closed and discrete in X . Let F
be a closed sequentially compact subset of X , disjoint from D. Since F is closed
in Y , there exists f : Y → I which is 0 on F and greater than 1/2 on a open
neighborhood U of y. Let n ∈ ω such that, for every k > n, xk ∈ U . For every
h ≤ n, let Uh be an open neighborhood of xh, in X , which is disjoint from F . Let
fh : X → I such that fh(X \Uh) = 0 and fh(xh) = 1. Then g = f |X +

∑
h fh is

a (bounded) real-valued function on X which separates D from F . �

We do not know a characterization of Tychonoff spaces which admit a Ty-
chonoff strict sequentially compact extension. An analogous problem for count-
ably compact extensions was studied by several authors (see [M], [K] and [vD,
Section 7]). They mostly studied possible countably-compactifications (that is,
“strict” countably compact extensions) of X contained in βX . In fact, it was
proved that, if X admits a countably-compactification, then there is one between
X and βX ([M]). This is not true for sequentially compact extensions.
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The following proposition shows that a Hausdorff space admits a strict (Haus-
dorff) sequentially compact extension if and only if it admits a sequentially com-
pact extension.

Proposition 1.8. For every sequentially compact extension Y of X , there exists
a strict sequentially compact extension Z of X such that Z \ X ∼= Y \ X .

Proof: Let Z be the space with the same underlying set as Y and with the
topology generated by the topology of Y and by the family of the complements
of the closed sequentially compact subsets of X . Clearly Z is Hausdorff and
Z \ X ∼= Y \ X . Since we can suppose X is not sequentially compact, X is dense
in Z. It is easy to prove that Z is sequentially compact. �

With the same notation of the above theorem, if Y is a sequential compactifi-
cation of X , then Z is also a sequential compactification, hence one has:

Corollary 1.9. For every sequential compactification aX of X there is a strict
sequential compactification bX such that bX ≥ aX and bX \ X ∼= aX \ X .
Furthermore, bX is the least strict sequential compactification greater than or
equal to aX .

It is easy to see that a sequential compactification of X , which is greater
than a strict sequential compactification, or is a quotient of a strict sequential
compactification, is also strict. Then, by [FV, 2.3 and 2.8], we obtain:

Proposition 1.10. Let SK(X) be nonempty. Then the set of strict sequen-
tial compactifications of X is a (nonempty) upper semilattice. Moreover, it is
complete lower semilattice if and only if X is ALSC.

2. Extension of functions

If X is Tychonoff and G ⊂ C∗(X) separates points from closed sets, we can use
G to embed X into a Tychonoff cube of weight |G|. The closure of the image of
X is a compactification of X to which every member of G continuously extends.
Since Tychonoff cubes of weight greater than or equal to s are not sequentially
compact, we cannot create sequentially compact extensions ofX in this way, when
w(X) ≥ s.
However, it is known that, if X is ALSC, then every continuous function from

X to a sequentially compact space Y can be extended to a sequentially compact
extension of X [FV, Theorem 3.1]. We want to prove that, if we also suppose
that X and Y are Tychonoff, then we can extend f to a Tychonoff sequentially
compact extension of X .
A construction equivalent to Whyburn’s unified space ([W]) was used in [L]

and [CFV] to find the smallest compactification of a locally compact space to
which a given function extends. We will imitate that construction.
Let X, Y be (Hausdorff) spaces and let f : X → Y be a continuous mapping.

Suppose X is locally bounded with respect to a closed boundedness FX . Put, on
the disjoint union of X and Y , the topology Tf generated by the open subsets of
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X and by the subsets of the form V ∪ (f−1(V ) \G), where V is open in Y and G
is a closed member of FX .

Lemma 2.1. (X ∪ Y, Tf ) is a Hausdorff space to which f extends. For a closed
subset F of X , F ∈ FX implies that F is closed in (X ∪ Y, Tf ). If Y is compact,
then the converse is also true.

Proof: The proof of the first statement is straightforward. A map f̂ extending f

is defined by f̂ |X= f and f̂ |Y = 1Y . It is also clear, by definition, that elements
of FX are closed in X ∪ Y .
Now, suppose Y is compact and let F ⊂ X be a closed subset of X∪Y . For every
y ∈ Y there is an open subset Uy of Y and a closed member Gy of FX such that

y ∈ Uy ∪ (f
−1(Uy) \Gy) ⊂ (X ∪Y ) \F . Let {Uyi

} be a finite subcover of Y . One
has

⋃
i(f

−1(Uyi
) \Gyi

) ⊂ X \F . Since
⋃

i f−1(Uyi
) = X , if an element x of X is

not in
⋃

i(f
−1(Uyi

) \Gyi
), then x must belong to some Gyi

. Therefore we obtain

F ⊂ X \ (
⋃

i

(f−1(Uyi
) \ Gyi

)) ⊂
⋃

i

Gyi
,

which implies F ∈ FX . �

Let us denote by E(f,FX) the closure of X in X ∪ Y , so that E(f,FX) is

a Hausdorff extension of X to which f extends. We denote by f̃ the (unique)

extension of f , obtained as restriction of f̂ . Note that X is open in E(f,FX).
Suppose Y is sequentially compact, X is ALSC (non-sequentially compact)

and FX ⊂ SCX . Then E(f,FX) is a sequentially compact extension of X where
closed elements of FX are closed. In particular, E(f,SCX), is a strict sequentially
compact extension.

E(f,SCX ) can fail to be Tychonoff even if X and Y are Tychonoff. In fact,
oX = E(f,SCX) when f is constant (see Section 1). However, one has:

Theorem 2.2. Let X be a Tychonoff LSC space. For every continuous f :
X → Y , where Y is Tychonoff and sequentially compact, there exists a Tychonoff
sequentially compact extension of X to which f extends.

Proof: Let K be any compactification of Y . We denote by f1 the composition of
f with the embedding of Y into K. We will prove that E(f1,SC

′
X) is Tychonoff.

Put S = E(f1,SC
′
X )\X . Let q : E(f1,SC

′
X )→ o(SC

′
X ) = X ∪{p} be the natural

map which collapses S to the point p. By the above lemma, q is a quotient map.
Let now A be a closed subset of E(f1,SC

′
X) and suppose z /∈ A. First let z ∈ X

and put B = A ∪ S. Then q(B) is a closed subset of o(SC′X ) which does not
contain z. Therefore z and q(B) are separated by a continuous function g from
o(SC′X ) to I. Clearly g ◦ q separates z and A. Now, let z ∈ S and A ⊂ X .

Then A = q(A) is closed in o(SC′X). Let g1 : o(SC
′
X ) → I be a function which

separates p from A. Then g1 ◦ q separates z from A. Note that g1 ◦ q is constant
on S. Finally let F = A ∩ S 6= ∅ and z ∈ S. Take a map v : S → I such that
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v(F ) = 0 and v(z) = 1. Let h = v ◦ f̃1 and let U = h−1([0, 1/2)). Then A \ U is
a closed subset of E(f1,SC

′
X ) contained in X . We can take, as before, a function

u : E(f1,SC
′
X ) → I such that u(S) = 1 and u(A \ U) = 0. Then the map h ∧ u

is less than 1/2 in U ∪ A and maps z to 1. We have proved that E(f1,SC
′
X) is

Tychonoff. It is easy to see that E(f,SC′X ) is a subspace of E(f1,SC
′
X), so it is

also Tychonoff. This completes the proof. �

Let

h = min{κ | ∃ a product of κ sequentially compact spaces which is not

sequentially compact}.

One has ω1 ≤ h ≤ c and, more precisely, t ≤ h ≤ s. A set theoretic definition of
h was given in [S].

Corollary 2.3. Let X be a Tychonoff LSC space. For every family {fl : X →
Yl}l<κ, where κ < h and Yl is sequentially compact for every l, there exists a
Tychonoff sequentially compact extension of X to which every fl extends.

Proof: We can use the above theorem, putting Y =
∏

Yl and f = ∆{fl}, the
diagonal map. �

Corollary 2.4. Let X be a Tychonoff LSC space. For every family {fl}l<κ ⊂
C∗(X), where κ < s, there exists a Tychonoff sequentially compact extension of
X to which every fl extends.

If X is not pseudocompact, then a space Y with X ⊂ Y ⊂ βX cannot be
sequentially compact. In fact, let N be a C-embedded copy of ω contained in X .
Then ClβXN ∼= βω, hence N contains no nontrivial sequence which converges in
βX . Since N ⊂ Y ⊂ βX , Y is not sequentially compact.
Obviously, if Y is a Tychonoff extension of X such that every element of C∗(X)

extends to Y , then βY = βX . Therefore one has:

Proposition 2.5. If X is LSC and it is not pseudocompact, then there is no
Tychonoff sequentially compact extension of X to which every member of C∗(X)
extends.

Let X be a Tychonoff space and suppose SKT (X) 6= ∅ (see Introduction).
Any nonempty subfamily of SKT (X) of cardinality κ < h has a supremum.

Also, whenever a subfamily of SKT (X) has an upper bound (lower bound) in
SK(X), then it has a supremum (respectively, an infimum) which is in SKT (X).
The proofs are analogous to [FV, 2.3, 2.4, 2.5]

By [FV, Prop. 2.4] we also deduce that, if SKT (X) is nonempty and does not
have a supremum, then SK(X) cannot have a supremum.

Proposition 2.6. Let X be a Tychonoff non-sequentially compact space.

(i) If X has a sequential compactification tX ⊂ βX , then tX = supSKT (X).
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(ii) If X is LSC and supSKT (X) exists, then it is contained in βX .
(iii) If X is LSC and it is not pseudocompact, then SKT (X) does not have a

supremum.
(iv) If X is second countable, then SKT (X) does not have a supremum.

Proof: (i). Let aX be a Tychonoff sequential compactification , with aX ⊂ βX ,
and suppose that aX is not the supremum of SKT (X). Then there is Y = bX ∈
SKT (X) with bX > aX . The canonical map pba : bX → aX , considered as a map
into βX , extends to βY . Let q : βY → βX be the extension. Since q |X is the
identity of X and βY is a compactification of X , q must be a homeomorphism,
so in particular, pba is a homeomorphism.

(ii). If sX = supSKT (X), then, by Theorem 2.2, every f ∈ C∗(X) extends to sX .

(iii) directly follows from Proposition 2.5.

(iv). If X is second countable, then, for every f ∈ C∗(X), there is a metrizable
compactification, hence a Tychonoff sequentially compact extension, to which f
extends. Using the same argument as before, we deduce that, if SKT (X) had
a supremum, then it would be a subspace of βX containing X . But this is
impossible, since X is not pseudocompact. �

Example. If X is the Tychonoff plank, then SKT (X) is trivially a complete
lattice.

We do not know any space X such that SK(X) has a supremum.

3. Ψ-systems

LetX be any Hausdorff space. It is known that, ifX has a sequentially compact
extension, then one has:
(I) every infinite subset of X which does not contain any (nontrivial) convergent
sequence has an infinite closed discrete subset;

(II) every closed countable discrete subset of X contains an infinite set D which is
separated from every point ofX\D by disjoint open sets ([FV, Proposition 1.1]).

Proposition 3.1. If X is sequential, then X satisfies (I).

Proof: Let S be an infinite subset of X which does not contain any convergent
sequence. Then S is closed. Furthermore, S is not sequentially compact, hence it
is not countably compact. Then S contains an infinite discrete subset D which is
closed in S, hence in X . �

Remark. Note that ω-collectionwise Hausdorff spaces, in particular, functionally
Hausdorff spaces, satisfy (II).

We recall that X is said to be weakly ω-collectionwise Hausdorff if for every
closed countable discrete subset E of X , there exists an infinite F = {xn} ⊂ E
and a family {Un} of pairwise disjoint open sets such that xn ∈ Un for each n.
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Proposition 3.2. If X satisfies (II), thenX is weakly ω-collectionwise Hausdorff.

Proof: Suppose E is a closed countable discrete subset of X . Let x1 be any
point of E and let E1 be an infinite subset of E \ {x1} which is separated, by
open sets, from every point of its complement. Let U1, V1 be disjoint open sets
which separate x1 from E1. Let now x2 ∈ E1, and let E2 be an infinite subset
of E1 \ {x2} which is separated from any point of its complement. Let U and V
be disjoint open sets which separate x2 from E2. Then we put U2 = U ∩ V1 and
V2 = V ∩ V1, so that one U1, U2 and V2 are pairwise disjoint. In this way we
can construct, inductively, an infinite subset F = {xn} of E and a family {Un}
of pairwise disjoint open subsets of X with xn ∈ Un for each n. �

Corollary 3.3. If X has a sequentially compact extension, then X is weakly
ω-collectionwise Hausdorff.

The space in the Example 2 in [FV] is weakly ω-collectionwise Hausdorff, but
does not satisfy (II), hence the converse of Lemma 3.2 is false.

In the following definitions we do not suppose that X is Hausdorff. Let A be
an (infinite) maximal almost disjoint family (MADF) of countable closed discrete
subsets of X . For each A ∈ A we take a point xA /∈ X (xA 6= xB when A 6= B).
Following [NV], we put

Ψ(X,A) = X ∪ {xA}A∈A,

endowed with the topology generated by the open subsets of X and by the sets
of the form {xA} ∪ U , where U is open in X and A \ U is finite. For X = ω we
obtain the well known example by Mrówka.
The following construction was done in [J] for X = ω and generalized in [NV].
A Ψ-system on X is a family {(Xα,Aα)}α≤ω1 , with X0 = X , such that: Aα is

a MADF of countable closed discrete subsets of the spaceXα; Xα+1 = Ψ(Xα,Aα)
for each α; if α is a limit ordinal, thenXα =

⋃
β<α Xβ with the topology generated

by the topologies of the Xβ ’s.
It is easy to see that Xω1 does not have infinite closed discrete subsets, that is,

Aω1 = ∅. If X is T1, then Xω1 is T1. For X = ω, Xω1 is Hausdorff [J], but this
is not true in general for Hausdorff spaces.
It was proved that, if a (Hausdorff) space X satisfies (I), then Xω1 is (T1 and)

sequentially compact for every Ψ-system on X . Moreover, for every sequential
compactification aX ofX , there is a Ψ-system {(Xα,Aα)} on X and a continuous
map from Xω1 onto aX which is the identity on X [FV, 1.8 and 2.10].
It is easy to prove that X is ω-collectionwise Hausdorff if and only if Ψ(X,A)

is Hausdorff for each MADF A of countable closed discrete subsets of X .
However, the condition that X is ω-collectionwise Hausdorff does not imply

that, for every Ψ-system on X , Xω1 is Hausdorff. In fact, this is not true even
for normal zero-dimensional spaces, as the following example shows.
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Example. Since R ∪ {−∞,+∞} is a sequential compactification of Q, there
exists a Ψ-system {Xα,Aα} on Q and a continuous surjective map f : Xω1 →
R∪{−∞,+∞} which is the identity on Q. Let q ∈ Q and let {yn} be a sequence
in R \ Q converging to q. For every n, let zn be a point of Xω1 \ Q such that
f(zn) = yn. The sequence {zn} has an accumulation point z ∈ Xω1 \ Q and
one has f(z) = q. Then Xω1 is not Hausdorff, since the identity of Q cannot be
extended to any Hausdorff space.

If a space X has a weak base consisting of countable compact sets, then X is
sequential, by [NV, Lemma 2.8]. Therefore, in view of Proposition 3.1, we can
remove one of the hypotheses of Theorem 1.10 in [FV] and we obtain:

If X has a weak base consisting of countable compact sets, then for every Ψ-
system on X , Xω1 is a Hausdorff, hence it is a sequentially compact extension
of X .

There exists a space which satisfies the hypothesis of the above theorem and
is not ALSC or first countable [FV, Example 6].

For every continuous map f : X → Z with Z sequentially compact, we will
denote by E(f) the family of countable closed discrete subsets E of X with the
following property: there is z ∈ Z such that, for every open neighborhood U of
z, E \ f−1(U) is finite. This is equivalent to the following: for every surjective
u : ω → E, the sequence {f(u(n))}n∈ω is convergent.

Lemma 3.4. If f : X → Z is a continuous map and Z is sequentially compact,
then there exists a MADF A of countable closed discrete subsets of X and a
unique continuous map f̃ : Ψ(X,A)→ Z which extends f .

Proof: Let A be a subfamily of E(f) which is almost disjoint and is maximal
among the almost disjoint subfamilies of E(f). Then A is a MADF of countable
closed discrete subsets of X . In fact, if B is a countable closed discrete subset
of X , then either f(B) is finite or contains a nontrivial convergent sequence. In
any case, B contains an element of E(f), and this implies that there exists A ∈ A
such that B ∩ A is infinite. Since, for every A ∈ A, f(A), viewed as a sequence,

converges to a point zA of Z, we can extend f to Ψ(X,A) putting f̃(xA) = zA.

To prove that f̃ is continuous, let U be an open neighborhood of f̃(xA). Then

A \ f̃−1(U) is finite. Therefore {xA} ∪ f−1(U) is a basic neighborhood of xA

whose image is contained in U . The extension f̃ is clearly unique. �

Theorem 3.5. If f : X → Z is a continuous map and Z is sequentially compact,
then there exists aΨ-system {Xα,Aα} onX and a continuous map fω1 : Xω1 → Z
such that fω1 |X = f (Xω1 may not be Hausdorff ).
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Proof: The proof can be done by induction, using the above proposition. If α
is a limit ordinal, and we have extended f to Xβ , for each β < α, then it is easy
to define a continuous extension of f to Xα. �

The above theorem generalizes Theorem 2.10 in [FV]. The proof here is sim-
plified.

Suppose X is a space such that, for every Ψ-system {Xα,Aα} on X , Xω1 is
Hausdorff. We have proved that, in this case, for every mapping from X to a
sequentially compact space, there exists a sequentially compact extension of X to
which f extends. We recall that an analogous result was known for ALSC spaces.
Using the diagonal map, we also obtain:

Corollary 3.6. For every family {fl : X → Yl}l<κ, where κ < h, and Yl is
sequentially compact for every l, there exists a Ψ-system {Xα,Aα} such that
every fl extends to Xω1 .
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