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Extraresolvability and cardinal arithmetic

O.T. Alas, S. Garcia-Ferreira, A.H. Tomita

Abstract. Following Malykhin, we say that a space X is extraresolvable if X contains
a family D of dense subsets such that |D| > ∆(X) and the intersection of every two
elements of D is nowhere dense, where ∆(X) = min{|U | : U is a nonempty open subset
of X} is the dispersion character of X. We show that, for every cardinal κ, there is a
compact extraresolvable space of size and dispersion character 2κ. In connection with
some cardinal inequalities, we prove the equivalence of the following statements:

1) 2κ < 2κ
+

, 2) (κ+)κ is extraresolvable and 3) A(κ+)κ is extraresolvable, where A(κ+)
is the one-point compactification of the discrete space κ+. For a regular cardinal κ ≥ ω,
we show that the following are equivalent: 1) 2<κ < 2κ; 2) G(κ, κ) is extraresolvable;
3) G(κ, κ)λ is extraresolvable for all λ < κ; and 4) there exists a space X such that
Xλ is extraresolvable, for all λ < κ, and Xκ is not extraresolvable, where G(κ, κ) =
{x ∈ {0, 1}κ : |{ξ < κ : xξ 6= 0}| < κ} for every κ ≥ ω. It is also shown that if X

is extraresolvable and ∆(X) = |X|, then all powers of X have a dense extraresolvable
subset, and λκ contains a dense extraresolvable subspace for every cardinal λ ≥ 2 and
for every infinite cardinal κ. For an infinite cardinal κ, if 2κ > c, then there is a totally
bounded, connected, extraresolvable, topological Abelian group of size and dispersion
character equal to κ, and if κ = κω, then there is an ω-bounded, normal, connected,
extraresolvable, topological Abelian group of size and dispersion character equal to κ.
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0. Introduction

In this paper, all topological spaces are assumed to be Tychonoff without iso-
lated points (in the case, when we consider an infinite power the factor space is
allowed to have isolated points). The purpose of this article is to continue the
study of the extraresolvable spaces. This time we shall focus on the cardinal
arithmetic that arises naturally from the theory of extraresolvable spaces.

The class of resolvable spaces was introduced by E. Hewitt in [He]. He called
a space resolvable if it has two disjoint dense subsets. E. Hewitt also proved in
[He] that metric spaces and locally compact spaces are resolvable (see [CG1, The-
orem 3.7]). It follows from the Definition that a space X cannot have more than
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∆(X)-many pairwise disjoint dense subsets. Years later, Ceder [Ce] investigated
the spaces that contain k-many pairwise disjoint dense subsets, for a cardinal
κ ≥ 2 (in the literature, these spaces are called κ-resolvable). In particular, a
space X is said to be maximally resolvable if X is ∆(X)-resolvable. It is known
that metric spaces and locally compact spaces are maximally resolvable (see [CG1]
and, for a more general result, see [Py]).

The extraresolvable spaces were introduced by V.I. Malykhin in [Ma], and some
examples and topological properties of extraresolvable spaces are given in [GMT],
[CG2] and [CG3].

Definition 0.1 (Malykhin). A space X is called extraresolvable if there exists
a family D of dense subsets of X such that |D| > ∆(X) and D ∩ D′ is nowhere
dense whenever D, D′ ∈ D and D 6= D′.

It is shown in [GMT] that every countable Frechét-Urysohn space is extrare-
solvable. Hence, the rational numbers Q is extraresolvable. It is also proved in
[GMT] that the real line R is c-resolvable, but it is not extraresolvable. On the
other hand, every extraresolvable space is ω-resolvable (see either [GMT] or [Ma]).

In the first section, we give some preliminary results and the basic definitions.
One of the main lemmas of the paper is proved in the second section (Lemma 2.1).
Using this lemma we show, for every infinite cardinal κ, the equivalence of the

conditions 1) 2κ < 2κ
+
; 2) (κ+)κ is extraresolvable; and 3) A(κ+)κ is extraresolv-

able. The third section is devoted to the study of extraresolvable dense subsets
of topological products.

1. Preliminaries

Cardinal variables are denoted by the Greek letters α, δ, κ and λ. If κ ≥ 2 and
α ≥ ω are cardinal numbers, then we define

logκ(α) = min{λ : α < κλ}.

We have the following properties:

(1) If we assume GCH , then logκ(κ) = cf(κ) for every cardinal κ.

(2) If α′ ≤ α and κ ≤ κ′, then logκ′(α′) ≤ logκ(α).

(3) If α ≤ κ, then logκ(α) ≤ logκ(κ) ≤ cf(κ) ≤ κ.

(4) If κ = λα, then α < logκ(κ).

(5) If κ = λα and λ ≤ logκ(κ), then logκ(κ)
α = κ.

(6) If cf(κ) = ω, then logκ(κ) = ω.

For a set X and an infinite cardinal number α, we put [X ]α = {A ⊆ X : |A| =
α}, the meaning of [X ]<α and [X ]≤α should be clear.

If X is a locally compact space, then A(X) will denote the one-point com-
pactification of X . A space X is < α-bounded if every subset A of X of size
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< α has compact closure. An ω-bounded space is a < ω1-bounded space. If
X is a space, x ∈ X and θ is an ordinal, then xθ will denote the point in Xθ

with all its coordinates equal to x. A family S of nonempty subsets of a space
X is said to be a π-network if every nonempty open subset of X contains an
element of S. The π-net weight of X is π − nw(X) = min{|S| : S is a π-network
of X}. A net for a space X is a collection N of subsets of X such that every
non-empty subset of X is the union of elements of N . The net weight of X is
defined by nw(X) = min{|N | : N is a net for X}. For every space X , we have
that π − nw(X) ≤ nw(X). We use the standard notation d(X), χ(X), t(X),
πw(X) and w(X) for the density, the character, the tightness, the π-weight and
the weight of a space X , respectively. We remark that ∆(Xκ) = |X |κ for every
space X and for every infinite cardinal κ.

A.G. El’kin [El] has shown that if πw(X) ≤ ∆(X), then X is maximally resolv-
able, and E.G. Pytkeev [Py] proved that if t(X) < ∆(X), then X is maximally
resolvable; hence, every locally compact space is maximally resolvable: for other
results concerning maximal resolvability the reader is referred to [Ce], [CG1], [Pa]
and [Py]. El’kin’s Theorem can be generalized as follows.
First, we state a cardinal function that extends the dispersion character of a

space.

Definition 1.1. Given a family F of non-empty subsets of X , we denote by
∆(F) = ω ·min{|F | : F ∈ F}.

For every space (X, τ) we have that ∆(X) = ∆(τ −{∅}) and ∆(N ) ≤ ∆(X) for
all π-network N of X . If X is a space with uncountable dispersion character and
N is the π-network of X consisting of the singletons, then ∆(N ) = ω < ∆(X).

Next, we slightly modify Lemma 3.5 from [CG1].

Theorem 1.2. If X has a π-network N such that

|N | ≤ ∆(N ),

then there is a familyD of pairwise disjoint dense subsets of X such thatD∩N 6= ∅
for every D ∈ D and for every N ∈ N , and |D| = ∆(N ).

Two very important relationships between extraresolvable spaces and resolv-
able spaces were established in [Ma] and [GMT]:

Theorem 1.3. Let X be a space. Then,

1. if X is extraresolvable, then X is ω-resolvable; and

2. if |X |nw(X) = ∆(X) then X is not extraresolvable. Furthermore, if there

is a π-base of size at most ∆(X), then X is maximally resolvable.

It follows from Theorem 1.3 that Xnw(X) is never extraresolvable for any
space X . Hence, the real line R and the remainder β(ω) − ω of β(ω) are c-
resolvable and are not extraresolvable. Observe that if X is extraresolvable, then
every finite power of X is extraresolvable as well. In fact, we have:
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Theorem 1.4. If X is extraresolvable, then Xκ is extraresolvable for every

cardinal κ with ∆(X) = ∆(Xκ).

Proof: Let X be an extraresolvable space, let D be a family of dense subsets of
X witnessing its extraresolvability and let κ be a cardinal with ∆(X) = ∆(Xκ).

Then, it is clear that E = {D × Xκ−{0} : D ∈ D} is a family of dense subsets
of X with pairwise nowhere dense intersection, and ∆(Xκ) = ∆(X) < |D| = |E|.
Therefore, Xκ is extraresolvable. �

2. Topological spaces

Our first result improves Theorem 3.8 of [GMT].

Lemma 2.1. Let κ and α be cardinal numbers with ω ≤ α. If X satisfies one

of the following two lists of conditions:

1. cf(κ) = α;

2. X has a π-network N such that |N | ≤ κ ≤ κ<α ≤ ∆(N );
3. every subset of X of size < κ is nowhere dense; and

4. ∆(X) < κα,

or

1′. X has a π-network N such that |N | ≤ α ≤ κ<α ≤ ∆(N );
2′. every subset of X of size < α is nowhere dense; and

3′. ∆(X) < κα,

then X is extraresolvable.

Proof: First, we assume that the clauses 1−4 hold. Let N be a π-network of X
with |N | ≤ κ ≤ κα ≤ ∆(N ). By Theorem 1.2, we may find κ<α-many pairwise
disjoint dense subsets of X such that each one of them meets every element of N .
Enumerate these dense subsets as {Ds : s ∈ κ<α} and enumerate the π-network
N as {Eν : ν < κ}, we repeat elements if it is necessary. Fix a sequence of
infinite ordinals {λξ : ξ < α} which is cofinal and strictly increasing in κ. For

each s ∈ κ<α, we choose Ns ∈ [Ds]
≤|λdom(s)| so that Ns ∩ Eν 6= ∅, for every

ν < λdom(s). For each f ∈ κα we define Mf =
⋃

ξ<α Nf↾ξ . Then, {Mf : f ∈ κα}
witnesses that X is extraresolvable.
Now, suppose that X satisfies conditions 1′−3′. In this case, we enumerate the

dense subsets as {Ds : s ∈ κ<α} and enumerate the π-networkN as {Eν : ν < α}.
For each s ∈ κ<α, we choose xs ∈ Ds ∩Edom(s). We define Mf = {xf↾ξ : ξ < α }

for each f ∈ κα. It is not hard to see that {Mf : f ∈ κα} is the required family.
�

It follows from Theorem 2.1 that if w(X) = ω ≤ ∆(X) < 2ω, then X has
a family D of dense subsets such that |D| = 2ω and D ∩ F is nowhere dense
whenever D, E ∈ D and D 6= E.
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Theorem 2.2. Let X be a space. If κ = |X |α for some infinite cardinal α and
logκ(κ) = d(X) = π − nw(X), then Xα is extraresolvable.

Proof: Put λ = logκ(κ). Let S be a π-network of X with |S| = π − nw(X). If

πξ : X
α → X is the projection map, for each ξ < α, then N = {

⋂
ξ∈F π−1

ξ (Sξ) :

F ∈ [α]<ω , Sξ ∈ S} is a π-network of Xα of cardinality ≤ λ, and each one of its
elements has size κ. That is

|N | ≤ λ ≤ κ = κ<λ = ∆(N ) < κλ.

It is clear that every subset ofXα of size < λ is nowhere dense and since ∆(Xα) =

κ < κλ, by Lemma 2.1, Xα is extraresolvable. �

Corollary 2.3. If κ = λα for some λ ≤ logκ(κ) and for some infinite cardinal
α, then A(logκ(κ))

α and (logκ(κ))
α are extraresolvable. In particular, for every

infinite cardinal α, the space A(log2α(2
α))α is a compact extraresolvable space of

size and dispersion character 2α.

It follows from Corollary 2.3 there exists a compact extraresolvable space X of
size and dispersion character c, and hence, by Example 3.21 of [GMT], for every
κ > c the product space X × A(κ) is a compact extraresolvable space of size κ

and dispersion character c.

Theorem 2.4. For every infinite cardinal κ, the following are equivalent:

1. 2κ < 2κ
+
;

2. (κ+)κ is extraresolvable;
3. A(κ+)κ is extraresolvable.

Proof: The proofs of the equivalences (1) ⇔ (2) and (1) ⇔ (3) are similar each
other. So, we only prove the former one.

(1) ⇒ (2). Since w((κ+)κ) ≤ κ+ ≤ (κ+)κ = (κ+)<κ+ = ∆((κ+)κ), every
subset of (κ+)κ of size < κ+ is nowhere dense and ∆((κ+)κ) = (κ+)κ ≤ 2κ <

2κ
+
= (κ+)κ

+
, by Lemma 2.1, (κ+)κ is extraresolvable.

(2) ⇒ (1). Suppose that 2κ = 2κ
+
. Since |(κ+)κ|w((κ

+)κ) = (κ+)κ
+
= 2κ

+
=

2κ = ∆((κ+)κ) = (κ+)κ, we must have that (κ+)κ cannot be extraresolvable
because of Theorem 1.3, but this is a contradiction. �

From Theorem 2.4, CH implies that ωω
1 and A(ω1)

ω are extraresolvable, and
under the assumption 2ω = 2ω1 these spaces cannot be extraresolvable.

The following lemma is taken from [CG2].

Lemma 2.5. If X is a space such that

1. ω ≤ w(X) ≤ ∆(X); and
2. every subset of X of size < ∆(X) is nowhere dense,
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then X is extraresolvable.

This fact implies that if α is an infinite cardinal with αω = α, then αω and
A(α)ω are extraresolvable. Hence, cω and A(c)ω are extraresolvable.

In the next theorem, we shall consider the following cardinal number:

p = min{|B| : B ⊆ [ω]ω has the strong finite intersection property

and there is not A ∈ [ω]ω with |A − B| < ω for all B ∈ B},

where strong finite intersection property means that every finite subfamily has
infinite intersection.

Theorem 2.6 [p = c]. If X satisfies that ω = |X | ≤ χ(X) < c, then X is

extraresolvable.

Proof: Assume p = c. For every x ∈ X , let Bx be a local base at x with
|Bx| ≤ χ(X). Fix x ∈ X . Since Bx has the strong finite intersection property and
|Bx| < c, there is Ax ∈ [ω]ω such that |Ax − B| < ω for all B ∈ Bx. Put

N = {E : E is a cofinite subset of Ax for some x ∈ X}.

Then, N is a countable π-network of X consisting of infinite sets and so, by
Lemma 2.1, X is extraresolvable. �

3. Subspaces of products

An example of a metric extraresolvable topological group of size and dispersion
character c is the following.

Example 3.1. There is a metric extraresolvable topological Abelian group of

size and dispersion character c.

Proof: Put λ = log
c
(c). We have that G = [λ]<ω has an Abelian group structure

with addition A + B = (A − B) ∪ (B − A), for A, B ∈ G. If G is equipped with
the discrete topology, by Theorem 2.2, then Gω is extraresolvable. Thus, Gω is a
metric extraresolvable topological Abelian group with |G| = ∆(G) = c. �

We will next show that some Σ products are extraresolvable under some car-
dinal arithmetic assumptions. We need the following notation and properties:

If ω ≤ α ≤ κ, then the space

G(κ, α) = {x ∈ {0, 1}κ : |{ξ < κ : xξ 6= 0}| < α}

satisfies that:

(1) G(κ, α) is a dense topological subgroup of {0, 1}κ;

(2) G(κ, α) is < cf(α)-bounded;
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(3) |G(κ, α)| = κ<α;

(4) ∆(G(κ, α)) = κ<α;

(5) w(G(κ, α)) = κ;

(6) if α < κ, then every subset of G(κ, α) of size < κ is nowhere dense;

(7) if α = κ, then every subset of G(κ, κ) of size < cf(κ) is nowhere dense; and

(8) every subset of G(κ, cf(κ)) of size < κ is nowhere dense.

Lemma 3.2. Let κ ≥ α ≥ ω. If G(κ, α)λ is extraresolvable for some λ < κ, then

(κ<α)λ < 2κ.

Proof: If (κ<α)λ = 2κ for λ < κ, then ∆(G(κ, α)λ) = |G(κ, α)|λ = (κ<α)λ =

κκ = 2κ = |G(κ, α)λ|w(G(κ,α)λ). According to Theorem 1.3, G(κ, α) cannot be
extraresolvable, which is a contradiction. �

The following result is a direct consequence of Lemma 2.1.

Lemma 3.3. Let κ be an infinite cardinal. If (κ<cf(κ))λ < κcf(κ) for a cardinal

λ < cf(κ), then G(κ, cf(κ))λ is extraresolvable. In particular, if κ is an infinite

strong limit regular (strongly inaccessible) cardinal, then G(κ, κ)λ is extraresolv-
able, for every λ < κ, and G(κ, κ) cannot be extraresolvable.

Proof: We shall verify that the conditions 1− 4 of Lemma 2.1 hold. Indeed, we
have that

w(G(κ, cf(κ))λ) = κ ≤ κ<cf(κ) ≤ (κ<cf(κ))λ = ∆(G(κ, cf(κ))λ)) < κcf(κ),

and we pointed out above that every subset of G(κ, cf(κ)) of size < κ is nowhere
dense. Therefore, G(κ, cf(κ)) is extraresolvable. �

Under GCH , if κ is a regular cardinal, then G(κ, cf(κ)) is extraresolvable. One
more application of Lemma 3.3 is that if κ is an infinite cardinal with cf(κ) = ω,
then G(κ, ω) is extraresolvable. Notice that G(ω, ω) is extraresolvable.

Lemma 3.4. Let ω ≤ κ ≤ α. If X satisfies that Xλ is extraresolvable, for all

λ < κ, and Xα is not extraresolvable, then 2<κ ≤ |X |<κ < |X |α.

Proof: Fix λ < κ. SinceXλ is extraresolvable there is a family {Dξ : ξ < |Xλ|+}

of dense subsets of Xλ witnessing that Xλ is extraresolvable. Since Xα and
Xλ × Xα are homeomorphic and {Dξ × Xα : ξ < |Xλ|+} is a family of dense

subsets of Xλ × Xα with the property that every two elements have nowhere
dense intersection, we must have that |Xλ|+ < |Xα|+, and so |X |λ < |X |α.
Since cf(|X |α) > α ≥ κ, 2<κ ≤ |X |<κ < |X |α. �

Observe from Lemma 3.2 that ifG(κ, cf(κ))λ is extraresolvable for some infinite

cardinal κ and some λ < cf(κ), then κ<cf(κ) < 2κ. The next two theorems are
consequences of Lemmas 3.2, 3.3 and 3.4.
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Theorem 3.5. Let κ be an infinite cardinal such that G(κ, cf(κ))cf(κ) is not
extraresolvable. Then the following are equivalent:

1. κ<cf(κ) < κcf(κ);

2. G(κ, cf(κ)) is extraresolvable;

3. G(κ, cf(κ))λ is extraresolvable for every λ < cf(κ);

4. there exists a space X such that |X |cf(κ) = κcf(κ), |X |<cf(κ) = κ<cf(κ),

Xλ is extraresolvable for all λ < cf(κ) and Xcf(κ) is not extraresolvable.

Proof: (1) ⇒ (2). This follows from Lemma 3.3.

(2) ⇒ (3). We need the following fact which lies in the proof of Lemma 1.26
of [CN]:

(∗) if δ ≥ ω and γ ≥ 2 are cardinal numbers, then (γ<δ)α = γ<δ for all
α < cf(δ).

By assumption, there is a family D of dense subsets of G(κ, cf(κ)) such that

κ<cf(κ) < |D| and D ∩ F is nowhere dense whenever D, F ∈ D and D 6= E. It

follows from (∗) that ∆(G(κ, cf(κ))λ) = (κ<cf(κ))λ = κ<cf(κ) for every λ < cf(κ)

and hence, the family of dense subsets {D×G(κ, cf(κ))λ−{0} : D ∈ D} witnesses
the extraresolvability of G(κ, cf(κ))λ for every λ < cf(κ).

(3) ⇒ (4). We have that |G(κ, cf(κ))| = κ<cf(κ) = (κ<cf(κ))<cf(κ), by

Lemma 1.26 from [CN], and |G(κ, cf(κ))|cf(κ) = κcf(κ). Then, the space X =
G(κ, cf(κ)) satisfies the conditions of clause 4.

(4) ⇒ (1). It follows from Lemma 3.4 that κ<cf(κ) = |X |<cf(κ) < |X |cf(κ) =

κcf(κ)
�

As an application of Theorem 3.5 and the fact that if κ is an infinite regu-
lar cardinal, then 2<κ = κ<κ (a proof is available in [CN, p. 18]), we have the
following.

Theorem 3.6. For a regular cardinal κ ≥ ω, the following are equivalent:

1. 2<κ < 2κ;
2. G(κ, κ) is extraresolvable;

3. G(κ, κ)λ is extraresolvable for all λ < κ;

4. there exists a space X such that Xλ is extraresolvable, for all λ < κ, and

Xκ is not extraresolvable.

The implication of (4) ⇒ (1) of Theorem 3.6 holds for any cardinal:

Theorem 3.7. Let κ be an infinite cardinal. If X is a space such that Xλ

is extraresolvable for every cardinal λ < κ and Xκ is not extraresolvable, then

2<κ < 2κ.

Proof: Following the proof of Lemma 3.4, we have that |Xλ|+ < |Xκ|+ for
every cardinal λ < κ, and hence 2λ < 2κ for every λ < κ. If cf(2<κ) < cf(κ),
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then 2<κ = 2λ for some λ < κ and hence 2<κ < 2κ. If cf(2<κ) = cf(κ), then
cf(2<κ) < cf(2κ) and hence 2<κ < 2κ. �

Corollary 3.8 [GCH ]. G(κ, cf(κ))cf(κ) is not extraresolvable for every infinite
cardinal κ.

It is a consequence of Theorem 1.3 that Xκ is not extraresolvable for every
κ ≥ nw(X), for every space X , and compact topological groups cannot be ex-

traresolvable, since |G| = 2w(G) for every compact topological group G (see [Co]).
It is then natural to ask whether, for every space X and for every infinite car-
dinal κ, the power space Xκ has a dense extraresolvable subspace. It is shown
in [CG3] that every totally bounded group has a dense (strongly) extraresolvable
subgroup; hence, every compact topological group has a dense extraresolvable
subgroup. The authors of [CG2] pointed out that every product of infinitely
many metric separable spaces admits a dense extraresolvable subspace (this re-
sult will follow directly from Lemma 3.15 below). Next, we shall give some partial
affirmative answers to the question suggested above.

The next lemma plays a very important rule in the construction of some ex-
traresolvable examples.

Lemma 3.9. Let α and κ be cardinal numbers with ω ≤ α ≤ κ and let {Xξ :
ξ < κ} be a set of infinite spaces. Suppose that

1) Dξ is a dense subset of Xξ for each ξ < κ;

2) γ = sup{|Dξ | : ξ < κ};
3) d = (dξ)ξ<κ ∈

∏
ξ<κ Dξ, and

4) there are cardinals δ and λ such that ((γ · κ)<α)δ < λκ and Dξ is λ-

resolvable for every ξ < κ.

If

Σ = {x ∈
∏

ξ<κ

Dξ : |{ξ < κ : xξ 6= dξ}| < α},

then Σδ is a dense extraresolvable subspace of (
∏

ξ<κ Xξ)
δ.

Proof: We have that ∆(Σδ) = |Σ|δ ≤ ((γ · κ)<α)δ < λκ. For each ξ < κ, we

choose a family {Dξ
ζ
: ζ < λ} of pairwise disjoint dense subsets of Dξ . Consider

the set F = {σ : E → [κ]<ω : E ∈ [δ]<ω}. If f ∈ λκ, then we define

Ef =
⋃

σ∈F

[[
∏

ν∈dom(σ)

(
∏

ξ∈σ(ν)

D
ξ
f(ξ)

×
∏

ξ∈κ−σ(ν)

{dξ})]× {dδ−dom(σ)}].

It is evident that Ef is dense in
∏

ξ<κ Xδ
ξ , for each f ∈ λκ. Let f, g ∈ λκ and let

ζ < κ be such that f(ζ) 6= g(ζ). Fix ν < δ and let πν : (
∏

ξ<κ Dξ)
δ →

∏
ξ<κ Dξ
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be the projection map on the νth-coordinate. Then, we have that

πν [Ef ∩ Eg] ⊆ {d} ∪ [(
⋃

F∈[κ]<ω

(
∏

ξ∈F

D
ξ
f(ξ)

×
∏

ξ∈κ−F

{dξ})) ∩

(
⋃

F∈[κ]<ω

(
∏

ξ∈F

D
ξ
g(ξ)

×
∏

ξ∈κ−F

{dξ}))].

Now, if πζ :
∏

ξ<κ Dξ → Dζ is the projection map, then

πζ [πν [Ef ∩ Eg]] ⊆ {dζ} ∪ (D
ζ
f(ζ)

∩ D
ζ
g(ζ)
) = {dζ}.

This shows that Ef ∩Eg is nowhere dense in Σ
δ. Therefore, Σδ is extraresolvable.

�

We remark that if, in Lemma 3.9, Dξ is a dense subgroup of a topological
group Xξ , for every ξ < κ, then Σ = {x ∈

∏
ξ<κ Dξ : |{ξ < κ : xξ 6= dξ}| < α}

is a dense subgroup of
∏

ξ<κ Xξ . If Dξ is a dense ω-bounded subspace of Xξ , for

every ξ < κ, and ω < cf(α), then Σ is a dense ω-bounded subspace of
∏

ξ<κ Xξ .

Lemma 3.10. Let α and κ be infinite cardinals such that ω < α ≤ κ. If

(κ<α)λ < 2κ for some cardinal λ, then G(κ, α)λ is extraresolvable.

Proof: Before applying Lemma 3.9, we shall verify that ((2ω · κ)<α)λ < 2κ.
In fact, if κ ≤ 2ω, then κ<α = 2<α = (2ω · κ)<α < 2κ, and if 2ω < κ, then
(2ω · κ)<α = κ<α < 2κ. Let {Aξ : ξ < κ} ⊆ [κ]ω be a partition of κ. Note

that {0, 1}Aξ ∼= {0, 1}ω for every ξ < κ. Enumerate Aξ as {θ(ξ, n) : n < ω} for

every ξ < κ. It is not hard to see that the function h : {0, 1}κ →
∏

ξ<κ{0, 1}
Aξ

defined by h(x) = ((xθ(ξ,n))n<ω)ξ<κ, for every x ∈ 2κ, is a homeomorphism and

isomorphism, and h[G(κ, α)] = Σ, where

Σ = {x ∈
∏

ξ<κ

{0, 1}Aξ : |{ξ < κ : (xθ(ξ,n))n<ω 6= 0Aξ}| < α}.

Hence, by Lemma 3.9, Σλ is extraresolvable. Therefore, G(κ, α)λ is extraresolv-
able.

�

A straightforward application of Lemma 3.10 is the following.

Corollary 3.11. Let α and κ be infinite cardinals such that ω < α ≤ κ, and

κ<α < 2κ. Then the compact group {0, 1}κ contains a dense < cf(α)-bounded
extraresolvable subgroup.

Next, we have another application of Lemma 3.9.
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Corollary 3.12. Let X be a resolvable space. If either πw(X) < 2κ or |X | < 2κ,
then Xκ contains a dense extraresolvable subspace.

Proof: We only prove the case when πw(X) < 2κ. Choose a dense resolvable
subspace D of X of size πw(X). We replace in Lemma 3.9 Dξ by D and Xξ by X

for every ξ < κ, α by ω, γ by πw(X), δ by 1, and λ by 2. Since (πw(X) · κ)<ω =
πw(X) · κ < 2κ, by Lemma 3.9, Xκ has a dense extraresolvable subspace �

It is worthy to mention that if X is resolvable and log2(πw(X)) ≤ κ, then Xκ

has a dense extraresolvable subspace. Hence, by Theorem 1.3, the power Xκ is ω-
resolvable for every κ ≥ log2(πw(X)). Hence, Rκ contains a dense extraresolvable
subset for every infinite cardinal κ.

Theorem 1.2 and Corollary 3.12 imply the following.

Corollary 3.13. If X is a space such that either πw(X) < 2ω and πw(X) ≤
∆(X) or X is a resolvable space with |X | < 2ω, then Xκ is an ω-resolvable space

that contains a dense extraresolvable subspace, for every infinite cardinal κ. In

particular, if X is a countable space with πw(X) = ω, then Xκ is ω-resolvable

and contains a dense extraresolvable subspace, for every infinite cardinal κ.

In the category of resolvable spaces, the following remains unsolved.

Question 3.14. If X is a resolvable space, must Xκ contain a dense extrare-

solvable subspace, for every infinite cardinal κ?

Corollaries 3.12 and 3.13 contain responses to Question 3.14 in the positive
fashion. Another partial affirmative answers to Question 3.14 are stated in the
next three corollaries.

Lemma 3.15. Let {Xξ : ξ < κ} be a set of spaces such that Xξ has a dense

extraresolvable subset Dξ with |Dξ| = ∆(Dξ), for each ξ < κ. Then,
∏

ξ<κ Xξ

has a dense extraresolvable subset.

Proof: In virtue of Theorem 1.4, we have that finite products of extraresolvable
spaces are extraresolvable. Hence, we may assume that ω ≤ κ. Fix x ∈

∏
ξ<κ Xξ.

Define
D =

⋃

F∈[κ]<ω

(
∏

ξ∈F

Dξ × {(xξ)ξ∈κ−F }).

It is evident that D is a dense subset of
∏

ξ<κ Xξ and ∆(D) =
∑

ξ<κ |Dξ|. For
each ξ < κ, choose a family Dξ of dense subsets of Dξ witnessing its extraresolv-
ability. Since |Dξ | = ∆(Dξ) for each ξ < κ, by König’s Lemma,∏

ξ<κ

|Dξ | >
∑

ξ<κ

∆(Dξ) =
∑

ξ<κ

|Dξ | = ∆(D).

For f ∈
∏

ξ<κ Dξ , we define

Ef =
⋃

F∈[κ]<ω

(
∏

ξ∈F

f(ξ)× {(xξ)ξ∈κ−F }).
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Notice that Ef is a dense subset of D for each f ∈
∏

ξ<κ Dξ . If f, g ∈
∏

ξ<κ Dξ ,

f(ζ) 6= g(ζ) for some ζ < κ, and πζ :
∏

ξ<κ Xξ → Xζ is the projection map, then

πζ [Ef ∩ Eg] ⊆ {xζ} ∪ (f(ζ) ∩ g(ζ)), and this implies that Ef ∩ Eg is nowhere
dense. This shows that D is extraresolvable. �

The following three results are immediate consequences of Lemma 3.15.

Corollary 3.16. If X has a dense extraresolvable subset D with |D| = ∆(D),
then Xκ has a dense extraresolvable subset for every cardinal κ. Hence, if X is

a space and Xω is extraresolvable, then every infinite power of X has a dense

extraresolvable subset.

Thus, if D witnesses the extraresolvability of a space X and |X |ω < |D|, then
Xω is extraresolvable and hence every power of X has a dense extraresolvable
subset. Next, we shall give an example of an extraresolvable spaceX with ∆(D) <

|D| for every dense subset D of X .

Example 3.17. Let κ be an uncountable cardinal and let Γκ = Q ⊕ κω be the

topological sum of Q and κω. Then

1. ∆(Γκ) = ω and w(Γκ) = κ;

2. Γκ is extraresolvable;

3. ∆(D) = ω < κ ≤ |D| for every dense subset D of Γκ; and

4. if D is a family of dense subsets that witnesses the extraresolvability of
Γκ, then |D| ≤ 2ω ≤ κω.

We claim that every subset of (Γκ)
ω of size < κ is nowhere dense. Indeed,

fix A ∈ [(Γκ)
ω ]<κ and assume that cl(Γκ)ωA has nonempty interior. Then, there

is m < ω such that clΓκ
πm[A] = Γκ, where πm : (Γκ)

ω → Γκ is the projec-
tion map. That is, πm[A] is dense in Γκ and, by clause (3), we must have that
|A| ≥ |πm[A]| ≥ κ, which is impossible. This shows our claim. This observation
and Lemma 2.5 imply that (Γκ)

ω is extraresolvable whenever κ = κω, because
of w((Γκ)

ω) = κ = ∆((Γκ)
ω) = κω. Hence, by Corollary 3.16, all powers of

Γκ have a dense extraresolvable subspace for every uncountable cardinal κ with
κ = κω . Now, let κ be an uncountable cardinal with cf(κ) = ω and choose
a dense subset D of (Γκ)

ω with |D| = ∆(D) = κ (this is possible since (Γκ)
ω

is maximally resolvable and w((Γκ)
ω) = κ ≤ κω = ∆((Γκ)

ω)). We have that
w(D) ≤ κ = κ<ω = ∆(D). By Lemma 2.1, D is an extraresolvable dense sub-
space of (Γκ)

ω and |D| = ∆(D). Thus, by Corollary 3.16, all powers of Γκ have a
dense extraresolvable subspace, for every uncountable cardinal κ with cf(κ) = ω.
We have shown that GCH implies that all powers of Γκ have a dense extraresolv-
able subspace for every uncountable cardinal κ. Unfortunately, we do not know
whether, in ZFC, all powers of Γκ have a dense extraresolvable subspace, for
every uncountable cardinal κ.

Corollary 3.18. If X is extraresolvable and |X | = ∆(X), then all powers of X

have a dense extraresolvable subset.
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Corollary 3.19. If Xλ is extraresolvable for some infinite cardinal λ, then Xκ

has a dense extraresolvable subset for every cardinal κ > λ.

We saw in Theorem 2.4 that (κ+)κ is extraresolvable iff 2κ < 2κ
+
, for every

infinite cardinal κ. Hence, GCH implies that (κ+)κ is extraresolvable for every
infinite cardinal κ, and in a model M of ZFC in which M |= 2ω = 2ω1 , we have
that M |= (ω1)

ω is not extraresolvable. However, all these spaces have, in any
model of ZFC, a dense extraresolvable subspace as is shown in the next theorem.

Theorem 3.20. Let λ and κ be cardinal numbers such that λ ≥ 2 and κ ≥ ω.

Then λκ has a dense extraresolvable subspace.

Proof: If 2 ≤ λ < ω, then λκ is homeomorphic to a compact topological group
and the conclusion follows from Theorem 1 of [CG3]. Suppose that λ ≥ ω.
According to Corollary 3.16, it suffices to show that λω has a dense extraresolvable
subspace D with |D| = ∆(D). Let us consider the following subspace of λω :

D = {x ∈ λω : |{n < ω : xn 6= 0}| < ω}.

It is evident that D is dense in λω and λ = w(D) = ∆(D) = |D|. We shall
verify that D is extraresolvable. In virtue of Lemma 2.5, we only need to show
that every subset D of size < λ is nowhere dense. In fact, let A ∈ [D]<λ and
suppose that clDA has nonempty interior. Then there is V =

⋃
j≤k π−1

nj
({θj}),

where πnj : λ
ω → λ is the projection map, nj < ω and θj < λ for every j ≤ k,

such that V ∩D ⊆ clDA. Since |{θ < λ : θ = an for some a ∈ A and n < ω}| < λ,
we may choose ν ∈ λ − {θ < λ : θ = an for some a ∈ A and n < ω}. Fix m ∈
ω −{n0, . . . , nk} and define W = V ∩ π−1

m ({ν}). Notice that ∅ 6=W ∩D ⊆ clDA.
If a ∈ A∩W , then πm(a) = am = ν, which is a contradiction. Therefore, D is an
extraresolvable dense subspace of λω with |D| = ∆(D). �

In the context of connected spaces, let us consider the following topological
groups:

For ω ≤ α ≤ κ and the unit circle T, we define

T (κ, α) = {x ∈ Tκ : |{ξ < κ : xξ 6= 1}| < α}

satisfies that:

(1) T (κ, α) is a connected, dense topological subgroup of Tκ;

(2) T (κ, α) is < cf(α)-bounded;

(3) |T (κ, ω)| = κ · 2ω and if α > ω, then |T (κ, α)| = κ<α;

(4) ∆(T (κ, ω)) = κ · 2ω and if α > ω, then T (κ, α) = κ<α;

(5) w(T (κ, α)) = κ;

(6) If α < κ, then every subset of T (κ, α) of size < κ is nowhere dense; and

(7) If α = κ, then every subset of T (κ, κ) of size < cf(κ) is nowhere dense.

Now, we again apply Lemma 3.9 to get the following result.
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Corollary 3.21. Let κ be an infinite cardinal.

1. If 2κ > c, then T (κ, ω) is a totally bounded, connected, extraresolvable,
topological Abelian group of size and dispersion character equal to κ.

2. If κ = κω, then T (κ, ω1) is an ω-bounded, normal, connected, extrare-

solvable, topological Abelian group of size and dispersion character equal

to κ.
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