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Initially κ-compact spaces for large κ

Stavros Christodoulou

Abstract. This work presents some cardinal inequalities in which appears the closed
pseudo-character, ψc, of a space.
Using one of them — ψc(X) ≤ 2d(X) for T2 spaces — we improve, from T3 to T2

spaces, the well-known result that initially κ-compact T3 spaces are λ-bounded for all
cardinals λ such that 2λ ≤ κ.
And then, using an idea of A. Dow, we prove that initially κ-compact T2 spaces are in

fact compact for κ = 2F (X), 2s(X), 2t(X), 2χ(X), 2ψc(X) or κ = max{τ+, τ<τ}, where
τ > t(p,X) for all p ∈ X.
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1. Introduction

If X is an initially κ-compact space and κ is sufficiently large with respect to
other cardinal numbers associated with X (e.g. κ = |X |, ω(X) or L(X)), then X
is in fact compact.
A. Dow [D85] asked if there is some T2 first-countable, initially ω1-compact,

non-compact space; and showed that under CH the answer is no. Moreover the
same holds in Cohen Models ([D89]) and under PFA ([BDFN]).
But, P. Koszmider [Koz] showed that it is consistent with any cardinal arith-

metic consistent with ¬ CH, that there is a normal, first-countable, initially ω1-
compact, non-compact space.
We do not know if a similar result may hold for larger cardinals. But, from

Koszmider’s example X and Corollary 3.3 it follows that it is also consistent
that there is a T2, first countable, separable, initially ω1-compact, non-compact
space Y : since, from Corollary 3.3, X cannot be ω-bounded, just take Y = A,
where A ⊆ X is such that |A| = ω and A is not compact.
Here, following the ideas of [D85], it is shown that initially κ-compact T2 spaces

are compact for κ = 2s(X), 2F (X), 2t(X), 2χ(X), 2ψc(X) or κ = max{τ+, τ<τ },
where τ > t(p,X) for all p ∈ X .
For this purpose we improved, from T3 to T2 spaces, the result that initially

κ-compact T3 spaces are λ-bounded for all cardinals λ such that 2
λ ≤ κ. From
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this result it also follows that every subspace of density λ such that 2λ ≤ κ of an
initially κ-compact T2 space is completely regular.
The improvement was obtained using a new bound for the closed pseudo-

character ψc of a T2 space X : ψc(X) ≤ 2
d(X).

2. Some cardinal inequalities

Here we present two bounds for the closed pseudocharacter ψc(X) of a space
X and two bounds for |X | using ψc(X).
We recall the definition of ψc, as in [Ju80]: for a T2 space 〈X, τX〉 we define,

for each p ∈ X ,

ψc(p,X) = min{|V| : V ⊆ τX , p ∈
⋂
V ,

⋂
{V : V ∈ V} = {p}},

and ψc(X) = sup{ψc(p,X) : p ∈ X}+ ω.
In [St], the closed pseudocharacter ψc is called the H-pseudocharacter and

it is proved there (Theorem 3.4) that every initially κ-compact T2 space of H-
pseudocharacter κ is a regular space of character κ (this result will be used in
Proposition 3.1 and Lemma 3.1).
The other cardinal functions are of more common usage and are as in [Ju80]

or [Ho].

Proposition 2.1. (i) For a T2 space X , ψc(X) ≤ 2
d(X).

(ii) For a Urysohn space X , ψc(X) ≤ 2s(X).

Proof: (i) For each p ∈ X , let Vp be the family of all open neighborhoods of p
and let D ⊆ X be a dense subspace of X such that |D| ≤ d(X).
Let C = {V ∩ D : V ∈ Vp}, and for each C ∈ C let Vc ∈ Vp be such that

C = Vc ∩D.
Let V = {Vc : C ∈ C}. Then V ⊆ τX , p ∈

⋂
V and

⋂
{V : V ∈ V} =

⋂
{V c :

C ∈ C} =
⋂
{Vc ∩D : C ∈ C} =

⋂
{C : C ∈ C} =

⋂
{V ∩D : V ∈ Vp} =

⋂
{V :

V ∈ Vp} = {p}.

Hence, ψc(p,X) ≤ |V| ≤ |C| ≤ |P(D)| ≤ 2d(X).

(ii) Let p ∈ X . For each q ∈ X \ {p} = Y let Uq and Vq be open neighborhoods

of p and q respectively such that Uq ∩ V q = ∅.
V = {Vq : q ∈ Y } is an open cover of Y . Applying to the space Y , with the

open cover V , Šapirovskǐi’s result (Proposition 4.8 of [Ho]), we get A,B ⊆ Y such
that |A| ≤ s(X), |B| ≤ s(X) and Y = A ∪ ∪{Vq : q ∈ B}.
Let C = {C ⊆ A : ∅ 6= C = Vq ∩ A for some q ∈ Y }; and for each C ∈ C let

qc ∈ Y be such that C = Vqc ∩A.
Let U = {Uqc : C ∈ C} ∪ {Uq : q ∈ B}. Then U ⊆ τX , p ∈

⋂
U and for

y ∈ X \ {p} = Y we have:

– if y ∈ A, then C = Vy ∩ A 6= ∅ and hence C ∈ C. So, y ∈ Vy ∩A = C =

Vqc ∩A ⊆ V qc and therefore y /∈ Uqc ;

– if y ∈ ∪{Vq : q ∈ B}, then y ∈ Vq for some q ∈ B; and hence y /∈ Uq.
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In either case, y /∈
⋂
{U : U ∈ U} and hence {p} ⊆

⋂
{U : U ∈ U} ⊆ {p}; i.e.

⋂
{U : U ∈ U} = {p}. Therefore, ψc(p,X) ≤ |U| ≤ |C| + |B| ≤ 2s(X) + s(X) =

2s(X). �

Proposition 2.2. For a T2 space X ,

(i) |X | ≤ 2d(X)ψc(X);

(ii) |X | ≤ d(X)t(X)ψc(X).

Proof: Both results follow immediately form Lemma 4.3 of [Ho], which may
be stated as: let κ be an infinite cardinal and let X be a T2 space such that
ψc(X) ≤ κ and there is a subset S of X such that X = ∪{A : A ⊆ S, |A| ≤ κ}.
Then |X | ≤ |S|κ.
For the first inequality, let κ = d(X)ψc(X) and S ⊆ X a dense subspace with

|S| ≤ d(X). Then,

|X | ≤ |S|κ ≤ [d(X)]d(X)ψc(X) = 2d(X)ψc(X).

For the second, let κ = t(X)ψc(X) and S ⊆ X dense with |S| ≤ d(X). Then

|X | ≤ |S|κ ≤ d(X)t(X)ψc(X). �

Remarks.

1. From these results some well-known inequalities follow:

(i) For T2 spaces X ,

– from 2.1(i) and 2.2(i), follows |X | ≤ 22
d(X)
;

– since t(X)ψc(X) ≤ χ(X), from 2.2(ii), follows |X | ≤ d(X)χ(X);

– since ψc(X) ≤ L(X)ψ(X) (2.8(c) of [Ju80]), from 2.2(ii) follows

|X | ≤ d(X)L(X)t(X)ψ(X) .

(ii) For T3 spaces X , since ψc(X) = ψ(X), from 2.2(i) and 2.2(ii), it

follows that |X | ≤ 2d(X)ψ(X) and |X | ≤ d(X)t(X)ψ(X).

2. In 1.0 of [Ju84] a T3 space X is given such that d(X)
ψ(X) < |X | and,

consequently, d(X)ψc(X) < |X |. This shows that 2(i) and 2(ii) cannot be

strengthened to |X | ≤ d(X)ψc(X).
3. In Example 7.1 of [Ju84], for each cardinal κ a T2 space X is given such
that d(X) = κ, |X | = s(X) = exp2(κ) and χ(X) = w(X) = exp3(κ);

where exp0(κ) = κ and expn+1(κ) = 2
expn(κ).

Then ψc(X) ≤ 2
d(X) ≤ 2κ; exp2(κ) = |X | ≤ 2d(X)ψc(X) ≤ 2κ.2

κ
=

exp2(κ) and hence |X | = 2d(X)ψc(X). But 2s(X)ψ(X) = exp3(κ) > |X |

and 2c(X)χ(X) = 2L(X)χ(X) = exp4(κ) > |X |.
This shows that 2.2(i) might give a more accurate bound for |X |, than

the three traditional inequalities above.
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3. Initially κ-compact spaces

We recall some definitions. Let κ ≥ ω be a cardinal; a space X is called:

– initially κ-compact iff every open cover of X of size ≤ κ has a finite
subcover;
– κ-bounded iff for every A ⊆ X with |A| ≤ κ there is Y ⊆ X , Y compact
such that A ⊆ Y (for X T2, this is equivalent to A being compact);
– < κ-bounded iff X is λ-bounded for every cardinal λ < κ.

Proposition 3.1. Let κ ≥ ω be a cardinal and let X be an initially κ-compact
T2 space. Then X is λ-bounded for every cardinal λ such that 2

λ ≤ κ.

Proof: Let λ be a cardinal such that 2λ ≤ κ, let A ⊆ X with |A| = λ and let
Y = A. Then Y , being closed in X , is also initially κ-compact ([St, Theorem 3.1]).
A ⊆ Y being dense in Y , gives d(Y ) ≤ |A| = λ; hence, from Proposition 2.1(i),

ψc(Y ) ≤ 2d(Y ) ≤ 2λ ≤ κ. Now, from Theorem 3.4 of [St], it follows that Y is a
regular space of character ψc(Y ) ≤ κ. Y being regular, we may use the well-known

inequality (3.3(b) of [Ho]) w(Y ) ≤ 2d(Y ) ≤ κ.
Given an open cover of Y , there is a subcover of it of size ≤ w(Y ) ≤ κ; and

(since Y is initially κ-compact) there is a finite subcover of it. Hence Y is compact
and X is λ-bounded. �

The next result uses an idea from Theorem 2 of [D85].

Proposition 3.2. Let κ > ω be a cardinal and let X be a T2 < κ-bounded,
non-compact space. Then X has a free sequence of length κ (i.e. F (X) ≥ κ).

Proof: Let U be an open cover of X which does not have a finite subcover.
Let λ < κ be a cardinal. Since X is λ-bounded, it follows that X is initially
λ-compact and hence U does not have a subcover of size λ; i.e. there is no V ⊆ U
with |V| < κ covering X .
We define by transfinite recursion on α < κ, a sequence 〈xα : α < κ〉 of points

of X and an increasing sequence 〈Uα : α < κ〉 of open subsets of X such that for
every α < κ,

(i) Uα is a union of ≤ max{|α|, ω} elements of U ;
(ii) xα /∈ Uα;

(iii) {xγ : γ < α} ⊆ Uα.

We start with any U0 ∈ U and, since U0 6= X , we may choose some x0 ∈ X\U0.
Let 0 < α < κ and suppose that xγ , Uγ have been already chosen for every

γ < α satisfying the three conditions above. Let Aα = {xγ : γ < α}. |Aα| ≤ |α| <

κ, and so Aα is compact. Hence there is Vα ⊆ U finite such that Aα ⊆
⋃
Vα.

Let Uα = ∪{Uγ : γ < α} ∪ (∪Vα). Since each Uγ is a union of ≤ max{|γ|, ω} ≤
max{|α|, ω} elements of U , it follows that Uα is a union of ≤ max{|α|, ω}.|α|+ω =

max{|α|, ω} elements of U . (iii) also holds since {xγ : γ < α} = Aα ⊆ ∪Vα ⊆ Uα.
And finally, since max{|α|, ω} < κ, Uα 6= X and we may choose some xα ∈ X\Uα.
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We claim that the sequence 〈xα : α < κ〉 is a free sequence of X : Let

α < κ, then {xγ : γ < α} ⊆ Uα and {xγ : α ≤ γ < κ} ⊆ X \ Uα. Hence

{xγ : α ≤ γ < κ} ⊆ X \ Uα = X \ Uα and therefore

{xγ : γ < κ} ∩ {xγ : α ≤ γ < κ} = ∅.
�

In the special case, where κ = θ+, Proposition 3.2 implies that if X is a T2
θ-bounded, non-compact space, then F (X) ≥ θ+; so we have the immediate:

Corollary 3.1. Let θ ≥ ω be a cardinal and let X be a T2 θ-bounded space with
F (X) ≤ θ or s(X) ≤ θ. Then X is compact. �

The space X = κ+ for κ ≥ ω, with the order topology shows that a space X
may be κ-bounded with t(X) = κ and χ(X) = κ and non-compact. But:

Corollary 3.2. Let κ ≥ ω be a cardinal and let X be a T2 κ-bounded, initially
κ+-compact space, with t(X) ≤ κ. Then X is compact.

Proof: Let X be κ-bounded, initially κ+-compact, with t(X) ≤ κ and suppose
that X is non-compact. Then X has some free sequence of length κ+. Since X
is initially κ+-compact, this free sequence has some complete accumulation point
p ∈ X ; which satisfies t(p,X) ≥ κ+, against t(X) ≤ κ. �

Lemma 3.1. Let κ ≥ ω be a cardinal and let X be a T2 initially κ-compact
space with ψc(X) ≤ κ. Then t(X) ≤ κ.

Proof: From Theorem 3.4 of [St], χ(X) = ψc(X) ≤ κ; and t(X) ≤ χ(X). �

Corollary 3.3. Let κ ≥ ω be a cardinal and let X be a T2 κ-bounded, initially
κ+-compact space with χ(X) ≤ κ or ψc(X) ≤ κ. Then X is compact. �

Combining these results with Proposition 3.1, we get:

Corollary 3.4. Let X be an initially κ-compact T2 space with κ = 2
F (X), or

κ = 2s(X), or κ = 2t(X), or κ = 2χ(X) or κ = 2ψc(X). Then X is compact.

Proof: From Proposition 3.1 it follows that X is λ-bounded for λ = F (X), or

λ = s(X), or . . . or λ = ψc(X); and, since λ
+ ≤ 2λ ≤ κ for all these λ’s, X is

also initially λ+-compact. Hence, from Corollaries 3.1 to 3.3, it follows that X is
compact. �

Remarks.

1. Koszmider’s example of a normal, non-compact, initially ω1-compact,
first-countable space, shows that it is not possible to improve in ZFC
Corollary 3.4 to κ = t(X)+, or κ = χ(X)+ or κ = ψc(X)

+.

2. Also this result does not hold for κ = 2c(X), as the following example

shows: Let κ = 2ω and let X = {f ∈ κ+2 : |f−1({1})| ≤ κ}. Then X is a
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T2, initially κ-compact, non-initially κ
+-compact space (cf. Example 4.2

of [St]). Also X is dense in Y = κ+2, hence c(X) ≤ c(Y ) = ω. Therefore

X is a T2 initially 2
c(X)-compact, non-compact space.

3. For T1 spaces the conclusion of Corollary 3.4 does not hold for κ = 2
F (X),

2s(X), 2t(X), 2d(X), as the following example shows: Let θ > ω be a
regular cardinal and let X = θ with the cofinite topology refined by the
initial segments — i.e. ∅ 6= U ⊆ X is open iff there exist α ≤ θ and F ⊆ α
finite such that U = {ξ < α : ξ /∈ F} = α \ F .
It is easy to see that X is a non-compact T1 (not T2) space. Also X

is initially κ-compact for every κ < θ: given an open cover U of X with
|U| = κ < θ, let, for each U ∈ U , βU = supU . If βU < θ for every U ∈ U ,
then sup{βU : U ∈ U} < θ and hence ∪U 6= X . Therefore βU0 = θ for
some U0 ∈ U . From this it follows that U0 = θ \ F = X \ F for some
F ⊆ θ finite and consequently U admits some finite subcover.
And finally hd(X) = ω, from which it follows that d(X) = s(X) =

F (X) = t(X) = ω. To see that hd(X) = ω, let Y ⊆ X be infinite. Y =
{αξ : ξ < o.t.(Y )} — with ω ≤ o.t.(Y ) and αξ < αη for ξ < η < o.t.(Y ).
It is immediate to see that A = {αξ : ξ < ω} is a countable dense subspace
of Y .
Hence, for θ = (2ω)+, X is a non-compact, initially 2ω-compact, T1

space, with d(X) = s(X) = F (X) = t(X) = ω (and more generally, for
every κ > ω, X = κ+ is a non-compact, initially κ-compact, T1 space
with d(X) = s(X) = F (X) = t(X) = ω).
In these spaces χ(X) = ψ(X) = κ if θ = κ+ (and χ(X) = ψ(X) = θ if

θ is a limit cardinal). Hence X is not initially 2χ(X)-compact; and in fact

we do not know if Corollary 3.4 holds for T1 spaces with κ = 2
χ(X), or if it

holds (for T1 or T2 spaces) with κ = 2
ψ(X) (for T3 spaces, ψ(X) = ψc(X),

so it holds).
4. Let κ0 = ω, κn+1 = 2

κn for n < ω and κ = sup{κn : n < ω}; κ is a strong
limit cardinal with cf(κ) = ω. Let X = κ+ with the order topology.
Then X is an initially κ-compact, non-compact, T2 (in fact T4) space with

κ > 2t(p,X) for all p ∈ X (since for p = α < κ+, t(p,X) = cf(α) < κ).
This example shows that the conclusion of Corollary 3.4 does not hold

with κ > 2t(p,X) for all p ∈ X (instead of κ = 2t(X)). But, we may prove
the following:

Proposition 3.3. Let X be an initially κ-compact T2 space, with
κ = max{τ+, τ<τ }, where τ > t(p,X) for all p ∈ X . Then X is compact.

Proof: Since κ ≥ τ+, it suffices (from Corollary 3.3) to show that X is τ -
bounded.
Let then S ⊆ X , |S| = τ and Y = S. We have that Y = ∪{A : A ∈ [S]<τ},

since, given p ∈ Y = S, there exists some A ⊆ S with |A| ≤ t(p,X) < τ such that
p ∈ A.
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Given a cardinal λ < τ we have that 2λ ≤ 2<τ ≤ τ<τ ≤ κ. Hence, from
Proposition 3.1, X is λ-bounded and thus A is compact for every A ∈ [S]<τ .
Therefore Y is a union of ≤ |[S]<τ | = τ<τ ≤ κ compact subsets of X .
Let now U be an open cover of Y . For each A ∈ [S]<τ let UA ∈ [U ]<ω be a

finite subcover of A and let V = ∪{UA : A ∈ [S]<τ} ⊆ U .
V is an open cover of Y of cardinality ≤ ω.τ<τ ≤ κ. Y is initially κ-compact

(since it is a closed subspace of X). Therefore there exists some finite V0 ⊆ V ⊆ U
which covers Y ; and Y is compact. �
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