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A fixed point theorem for non-self

multi-maps in metric spaces

B.C. Dhage

Abstract. A fixed point theorem is proved for non-self multi-valued mappings in a met-
rically convex complete metric space satisfying a slightly stronger contraction condi-
tion than in Rhoades [3] and under a weaker boundary condition than in Itoh [2] and
Rhoades [3].
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Let (X, d) be a metric space. Then X is said to be metrically convex if for every
pair x, y ∈ X , x 6= y, there is a point z ∈ X such that d(x, y) = d(x, z) + d(z, y).
We need the following lemma in the sequel.

Lemma 1 ([1]). Let K be a non-empty and closed subset of a metrically convex
metric space X . Then for any x ∈ K and y /∈ K, there exists a point z ∈ ∂K
such that d(x, y) = d(x, z) + d(z, y), where ∂K denotes the boundary of K.

Let CB(X) denote the family of all non-empty, closed and bounded subsets
of X . Denote for A, B ∈ CB(X)

D(A, B) = inf{d(a, b) | a ∈ A, b ∈ B}

and

δ(A, B) = sup{d(a, b) | a ∈ A, b ∈ B}.

Note that D(A, B) ≤ H(A, B) ≤ δ(A, B), where H(A, B) denotes the Hausdorff
distance of A and B.
In [2] Itoh proved a fixed point theorem for the non-self maps F : K → CB(X)

satisfying certain contraction condition in terms of Hausdorff metric H on CB(X)
under the boundary condition F (∂K) ⊂ K. Recently Rhoades [3] generalized
this result to a wider class of non-self multi-maps on K. In this paper we prove
a fixed point theorem for non-self multi-maps on K satisfying a slightly stronger
contraction condition than that in Rhoades [3] and under a weaker boundary
condition.



252 B.C.Dhage

Theorem 1. Let (X, d) be a metrically convex complete metric space and K a
non-empty closed subset of X . Let F : K → CB(X) be a multi-map satisfying

(1) δ(Fx, Fy) ≤ αmax{d(x, y), D(x, Fx), D(y, Fy)} + β[D(x, Fy) +D(y, Fx)]

for all x, y ∈ K, where α ≥ 0, β ≥ 0 satisfy

(2) 2α+ 3β < 1.

Further, if Fx∩K 6= ∅ for each x ∈ ∂K, then F has a unique fixed point p ∈ K
such that Fp = {p} and F is continuous at p in the Hausdorff metric on X .

Proof: Let x ∈ K be arbitrary and consider a sequence {xn} in K as follows:
Let x0 = x and take a point x1 ∈ Fx0 ∩ K if Fx0 ∩ K 6= ∅. Otherwise choose a
point x1 ∈ ∂K such that

d(x0, x
′

1) = d(x0, x1) + d(x1, x
′

1)

for some x′1 ∈ Fx0 ⊂ X \ K.
Similarly pick x2 ∈ Fx1 ∩ K if Fx1 ∩ K 6= ∅, otherwise choose a point x2 ∈ ∂K
such that

d(x1, x2) + d(x2, x
′

2) = d(x1, x
′

2)

for some x′2 ∈ Fx1 ⊂ X \ K.
Continuing in this way we have

xn+1 ∈ Fxn ∩ K if Fxn ∩ K 6= ∅,

or xn+1 ∈ ∂K satisfying

d(xn, xn+1) + d(xn+1, x
′

n+1) = d(xn, x′n+1)

for some x′n+1 ∈ Fxn ⊂ X \ K.
By the construction of {xn}, we can write

{xn} = P ∪ Q ⊂ K,

where
P = {xn ∈ {xn} : xn ∈ Fxn−1}

and
Q = {xn ∈ {xn} : xn ∈ ∂K, xn /∈ Fxn−1}.

Then for any two consecutive terms xn, xn+1 of the sequence {xn}, we observe
that there are only the following three possibilities:

(i) xn, xn+1 ∈ P ,
(ii) xn ∈ P , xn+1 ∈ Q, and
(iii) xn ∈ Q and xn+1 ∈ P .

First we show that {xn} is a Cauchy sequence in K. Now for any xn, xn+1 ∈
{xn}, we have the following estimates:
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Case I. Suppose that xn, xn+1 ∈ P , then we have

d(xn, xn+1) ≤ δ(Fxn−1, Fxn)

≤ αmax{d(xn−1, xn), D(xn−1, Fxn−1), D(xn, Fxn)}

+ β[D(xn−1, Fxn) +D(xn, Fxn−1)]

≤ αmax{d(xn−1, xn), d(xn, xn+1)}

+ β[d(xn−1, xn+1) + d(xn, xn)]

= αmax{d(xn−1, xn), d(xn, xn+1)}+ βd(xn−1, xn+1)

≤ αmax{d(xn−1, xn), d(xn, xn+1)}

+ β[d(xn−1, xn) + d(xn, xn+1)]

= max{(α+ β)d(xn−1, xn) + βd(xn, xn+1),

(α+ β)d(xn, xn+1) + βd(xn−1, xn)}

and hence
d(xn, xn+1) ≤ kd(xn−1, xn),

where k = max{α+β
1−β , β

1−(α+β)
} < 1, since 2α+ 3β < 1.

Case II. Let xn ∈ P and xn+1 ∈ Q. Then

d(xn, xn+1) + d(xn+1, x
′

n+1) = d(xn, x′n+1)

for some x′n+1 ∈ Fxn. Clearly,

(3)

{

d(xn, xn+1) ≤ d(xn, x′n+1)

d(xn, x′n+1) ≤ δ(Fxn−1, Fxn).

Now following arguments similar to those in Case I, we obtain

(4) d(xn, x′n+1) ≤ kd(xn−1, xn),

where again k = max{α+β
1−β , β

1−(α+β)
} < 1.

From (3) and (4) it follows that

(5) d(xn, xn+1) ≤ kd(xn−1, xn).

Case III. Suppose that xn ∈ Q and xn+1 ∈ P . Note that then xn−1 ∈ P and
there is a point x′n ∈ Fxn−1 such that

(6) d(xn−1, xn) + d(xn, x′n) = d(xn−1, x
′

n).
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Now,

d(xn, xn+1) ≤ d(xn, x′n) + d(x′n, xn+1)

≤ d(xn, x′n) + δ(Fxn−1, Fxn)

≤ d(xn, x′n) + αmax{d(xn−1, xn), D(xn−1, Fxn−1), D(xn, Fxn)}

+ β[D(xn−1, Fxn) +D(xn, Fxn−1)]

≤ d(xn, x′n) + αmax{d(xn−1, xn), d(xn−1, x
′

n), d(xn, xn+1)}

+ β[d(xn−1, xn+1) + d(xn, x′n)]

≤ d(xn, x′n) + αmax{d(xn−1, x
′

n), d(xn, xn+1)}

+ β[d(xn−1, xn) + d(xn, xn+1) + d(xn, x′n)]

= d(xn, x′n) + αmax{d(xn−1, x
′

n), d(xn, xn+1)}

+ β[d(xn−1, x
′

n) + d(xn, xn+1)]

≤ d(xn−1, x
′

n) + αmax{d(xn−1, x
′

n), d(xn, xn+1)}

+ β[d(xn−1, x
′

n) + d(xn, xn+1)].

From (4) of Case II applied to n − 1, we have d(xn−1, x
′

n) ≤ kd(xn−2, xn−1)
and hence

d(xn, xn+1) ≤ kd(xn−2, xn−1) + max{kd(xn−2, xn−1), d(xn, xn+1)}

+ β[kd(xn−2, xn+1) + k(xn, xn+1)]

= max{(1 + α+ β)kd(xn−2, xn−1) + βd(xn, xn+1),

(1 + β)kd(xn−2, xn−1) + (α+ β)d(xn, xn+1)}.

This implies

d(xn, xn+1) ≤ max{(1 + α+ β)k/(1− β), (1 + β)k/[1− (α+ β)]}d(xn−2, xn−1)

= qd(xn−2, xn−1),

where

q = max{(1 + α+ β)k/(1− β), (1 + β)k/[1− (α+ β)]}

= kmax{(1 + α+ β)/(1 − β), (1 + β)/[1 − (α+ β)]} = k(1 + β)/[1− (α+ β)]

= (1 + β)/[1− (α+ β)]max{(α+ β)/(1− β), β/[1 − (α+ β)]}

= max{(1 + β)(α+ β)/[(1− β)(1 − (α+ β))], β(1 + β)/[1− (α+ β)]2}

< 1.

To see this, the inequality (2) yields

α+ β < 1− 2β − α

⇒ α+ β + αβ + β2 < 1− 2β − α+ αβ + β2

⇒ (α+ β + αβ + β2)/(1− 2β − α+ αβ + β2) < 1

⇒ (1 + β)(α + β)/[(1− β)(1− α − β)]} < 1.
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Similarly again from (2) we have

2α+ 3β < α2 + 2αβ + 1

⇒ β + β2 < 1− 2α − 2β + α2 + 2αβ + β2

⇒ β(1 + β) < 1− 2(α+ β) + (α+ β)2

⇒ β(1 + β) < [1− (α+ β)]2

⇒ β(1 + β)/[1− (α+ β)]2 < 1.

Now for any n ∈ N , we have

(7) d(x2n, x2n+1) ≤ qd(x2n−2, x2n−1) ≤ qnd(x0, x1).

Since n is arbitrary, one has

(8) d(xn, xn+1) ≤ qnd(x0, x1).

Then from Cases I–III, it easily follows that {xn} is a Cauchy sequence in K. As
K is closed it is complete and hence limn xn = p exists. We show that p is a fixed
point of F . Without loss of generality we may assume that xn+1 ∈ Fxn for some
n ∈ N . Then

D(p, Fp) = lim
n

D(xn+1, Fp)

≤ lim
n

δ(Fxn, Fp)

≤ lim
n
max{d(xn, p), D(xn, Fxn), D(p, Fp)}

+ β lim
n
[D(xn, Fp) +D(p, Fxn)]

= α lim
n
max{d(xn, p), d(xn, xn+1), D(p, Fp)}

+ β lim
n
[D(xn, Fp) + d(p, xn+1)]

= (α+ β)D(p, Fp)

which is possible only when p ∈ Fp.
Further, we have

δ(p, Fp) ≤ δ(Fp, Fp)

≤ αmax{d(p, p), D(p, Fp), D(p, Fp)}+ β[δ(p, Fp) +D(p, Fp)]

= βδ(p, Fp)

and hence Fp = {p}.
To show the uniqueness of p, let q (6= p) be another fixed point of F . Then

d(p, q) ≤ δ(Fp, Fq)

≤ αmax{d(p, q), D(p, Fp), D(q, Fq)}+ β[D(p, Fq) +D(q, Fp)]

= (α + 2β)d(p, q).
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This is a contradiction since α+ 2β < 1 and hence p = q.

Finally we prove the continuity of F at p. Let {zn} ⊂ X by any sequence such
that zn → p as n → ∞. Now

lim
n

H(Fzn, F ) ≤ lim
n

δ(Fzn, Fp)

≤ α lim
n
max{d(zn, p), D(zn, F zn), D(p, Fp)}

+ β lim
n
[D(zn, Fp) +D(p, Fzn)]

≤ α lim
n
max{d(zn, p), D(zn, F zn)}

+ β lim
n
[d(zn, p) +D(p, Fzn)]

= (α+ β)H(Fzn, Fp)

where α + β < 1. Therefore limn H(Fzn, Fp) = 0, showing that F is continuous
at p. This completes the proof. �

The following fixed point theorem for non-self multi-maps on a complete con-
vex metric space satisfying a slightly weaker contraction condition and under a
stronger boundary condition than ours has been proved by Rhoades [3].

Theorem 2 ([3]). Let (X, d) be a metrically convex metric space and K a non-
empty closed subset of X .
Let F : K → CB(X) satisfy

(9) H(Fx, Fy) ≤ αd(x, y) + βmax{D(x, Fx), D(y, Fy)}

+ γ[D(x, Fy) +D(y, Fx)]

for all x, y ∈ X where α, β, γ ≥ 0 such that

(10)

(

1 + α+ γ

1− β − γ

) (

α+ β + γ

1− γ

)

< 1.

Further if Fx ⊂ K for each x ∈ ∂K, then there exists a p ∈ K such that

p ∈ Fp and F is upper semi-continuous at p.

Proof: The existence of such a fixed point p ∈ K follows from Theorem 1 of
Rhoades [3]. We only show the upper semi-continuity of F at p.
Let {zn} ⊂ K be any sequence such that zn → p as n → ∞.
Let {yn} be a sequence in K such that yn ∈ Fxn for each n ∈ N and yn → q.

To finish, we shall prove that q ∈ Fp. Now

d(q, p) = lim
n

d(yn, p) ≤ lim
n

H(Fzn, Fp)

= lim
n

d(zn, p) + β lim
n
max{D(zn, F zn), D(p, Fp)}

+ γ lim
n
[D(zn, Fp) +D(p, Fzn)]

= β lim
n
max{d(zn, yn), 0}+ γ lim

n
d(p, yn)

= βd(p, q) + γd(p, q) = (β + γ)d(p, q)
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which is possible only when d(q, p) = 0 as β+ γ < 1. Hence q ∈ Fp and the proof
ot the theorem is complete. �

Next we prove two fixed point theorems for multi-maps on a metric space satis-
fying a contractive condition more general than (1) and under certain compactness
type conditions.

Theorem 3. Let (X, d) be a complete metrically convex metric space and K a
non-empty compact subset of X . Suppose that F : K → CB(X) is a continuous
multi-map satisfying

(11) δ(Fx, Fy) < αmax{d(x, y), D(x, Fx), D(y, Fy)} + β[D(x, Fy) +D(y, Fx)]

for all x, y ∈ K, x /∈ Fx, y /∈ Fy, where α, β > 0 satisfy 2α + 3β ≤ 1. If
Fx ∩ K 6= ∅ for each x ∈ ∂K then the multi-map F has a unique fixed point.

Proof: First we note that if the multi-map F has a fixed point then from con-
dition (11) it follows that the fixed point is unique.
Since K is compact, both sides of the inequality (11) are bounded on K. Now

there are two possibilities:

Case I. Suppose that the right hand side of (11) is zero for some (x, y) ∈ K×K,
then we have x = y ∈ Fy. Thus F has a fixed point and so it is unique.

Case II. Suppose that the right hand side of (11) is positive for all x, y ∈ K.
Denote for brevity

M(x, y) = αmax{d(x, y), D(x, Fx), D(y, Fy)} + β[D(x, Fy) +D(y, Fx)].

Now in the case when 2α+ 3β < 1, the conclusion of Theorem 3 follows from
Theorem 1. Therefore we treat only the case when 2α+ 3β = 1.
Define a function T : K2 → R

+ by

(12) T (x, y) =
δ(Fx, y)

M(x, y)
.

Clearly the function T is well defined since M(x, y) 6= 0 for all x, y ∈ K.
Since F , D and δ are continuous, T is continuous and from the compactness

of K it follows that there is a point (u, v) ∈ K2 such that T attains its maximum
at this point. Call the value c. From (11) we get 0 < c < 1. By the definition
of T , we obtain

δ(Fx, Fy) ≤ cM(x, y)

= α′max{d(x, y), D(x, Fx), D(y, Fy)} + β′[D(x, Fy) +D(y, Fx)]

for all x, y ∈ K, where 2α′ + 3β′ = c(2α+ 3β) < 1. As K is compact, it is closed
and so the desired conclusion follows by an application of Theorem 1. The proof
is complete. �
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Theorem 4. Let (X, d) be a complete metrically convex metric space and K a
compact subset of X . Suppose that F : K → CB(X) is a continuous multi-map
satisfying

(13) H(Fx, Fy) < αd(x, y) + βmax{D(x, Fx), D(y, Fy)}

+ γ[D(x, Fy) +D(y, Fx)]

for all x, y ∈ X , x /∈ Fx, y /∈ Fy, where α, β, γ > 0 satisfy (1+α+γ
1−β−γ

) (α+β+γ
1−γ ) ≤ 1.

If Fx ⊂ K for each x ∈ ∂K then the multi-map F has a fixed point.

Proof: The proof is similar to Theorem 3 and now the desired conclusion follows
by an application of Theorem 2. �
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