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An independency result in connectification theory

Alessandro Fedeli, Attilio Le Donne

Abstract. A space is called connectifiable if it can be densely embedded in a connected
Hausdorff space.
Let ψ be the following statement: “a perfect T3-space X with no more than 2c clopen

subsets is connectifiable if and only if no proper nonempty clopen subset of X is feebly
compact”.
In this note we show that neither ψ nor ¬ψ is provable in ZFC.
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The problem of finding those spaces which can be densely embedded in a
connected Hausdorff space has been extensively studied in the last years and
many results have been obtained (see, e.g., [1], [2], [6], [10] and [13]).
Despite all the efforts, a characterization of connectifiable spaces is still un-

known.
In this note we present a characterization of connectifiable perfect T3-spaces

with no more than 2c clopen subsets, which can be neither proved nor disproved
in ZFC.
We recall that a space X is called:

(i) perfect if every closed subset of X is a Gδ-set;

(ii) H-closed if every open cover of X has a finite subfamily whose union is dense,
or equivalently, X is a closed subspace of every Hausdorff space in which it is
contained;

(iii) feebly compact if every countable open cover of X has a finite subfamily
whose union is dense.

As usual, p will stand for the smallest cardinality of a maximal subfamily of
[ω]ω with the strong finite intersection property (see, e.g., [4] and [12]).
Regarding connectifiability observe that

(1) A connectifiable space contains no proper nonempty open H-closed subset
([13]).

(2) Let X be a Hausdorff space with no more than 2c clopen subsets. If every
proper nonempty clopen subsets of X is not feebly compact, then X is connecti-
fiable ([10]).
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(3) There exists, in ZFC, a nonconnectifiable Hausdorff space of cardinality c with
no proper nonempty H-closed subspace ([10]).

(4) It is consistent with ZFC that there is a nonconnectifiable normal Hausdorff
space of cardinality c which has no proper nonempty H-closed subspace ([10]).

In our result we will make use of the following set-theoretic statements (which
are consistent with ZFC):

(a) p > ω1;

(b) (Jensen’s Combinatorial Principle ♦) There are sets Aα ⊂ α for α < ω1 such
that for every A ⊂ ω1 the set {α < ω1 : A ∩ α = Aα} is stationary.

We refer the reader to [5] for topological terminology. For set-theoretic termi-
nology see [8] and [4].

Theorem. The following statement:

“a perfect T3-space X with no more than 2c clopen subsets X is connec-

tifiable if and only if no proper nonempty clopen subset of X is feebly

compact”

is independent of ZFC.

Proof: First let us show that, under p > ω1, the above statement is true.
If X is not connectifiable then, by one of the above mentioned result, there is

a proper nonempty feebly compact clopen subset A of X .
Now let us suppose that there is a proper nonempty feebly compact clopen

subset A of X . Since X is T3 and perfect, it follows that A is a countably
compact perfect T3-space. So by a theorem of Weiss (here we use p > ω1) A is
compact ([14], see also [12]).
Hence X is not connectifiable. Therefore the statement is consistent with ZFC.
Now let us prove the independency by showing that, under the Jensen’s prin-

ciple ♦, there exists a connectifiable T6-space with exactly two proper nonempty
clopen subsets, each of which is feebly compact.
Let S be the Ostaszewskii’s space, this space is, under ♦, an example of a

noncompact countably compact perfectly normal space ([9]).
Let Z be the cone over S, i.e., let Z be the quotient of S × I obtained by

identifying S × {1} with a point.
Now Z is noncompact (S×{0} is a noncompact space homeomorphic to a closed

subspace of Z), countably compact and perfectly normal (Z is the continuous
closed image of the countably compact perfectly normal space S × I under the
natural mapping).
Now let X = Z ⊕Z, X is a perfectly normal space. The only proper nonempty

clopen subsets of X are the two copies of Z, which are countably compact (=
feebly compact) but not compact.
Since a Hausdorff space with open components is connectifiable if and only

if it has no proper nonempty open H-closed subspace ([7]), it follows that X is
connectifiable. �
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Example. It is worth noting that there is a ZFC example of a connectifiable
perfect Hausdorff space, with no more than 2c clopen subsets, which has proper
nonempty feebly compact clopen subsets.
In fact let F be the set of all free ultrafilters on ω and let Y be ω∪F endowed

with the topology generated by the points of ω and all sets of the form G ∪ {p}
where G ∈ p ∈ F . Now fix p ∈ F and let X be the subspace Y \ {p} of Y .

X is a Hausdorff space which is not H-closed (it is not closed in Y ).
Now let us show that X is feebly compact. By a result in [3] it is enough to

show that every locally finite system of pairwise disjoint nonempty open subsets
of X is finite.
Suppose that A = {An : n ∈ ω} is an infinite locally finite family of pairwise

disjoint nonempty open subsets of X . Without loss of generality we may assume
that, for every n, An = {κn} for some κn ∈ ω.
Let q be a free open ultrafilter on ω such that q 6= p and {κn : n ∈ ω} ∈ q.

Since every neighbourhood of q in X meets infinitely many members of A, we
reach a contradiction. Therefore X is feebly compact.
Moreover X is perfect. In fact, every open subset A of X , is the union of the

Fσ-set ω ∩ A and the closed set A \ ω (A \ ω is a subset of the closed discrete
subspace X \ ω of X).
Now let C be the cone over X and set Z = C ⊕ C.
Z is a perfect Hausdorff space, and the only two proper nonempty clopen

subsets of Z (namely the copies of X) are feebly compact.
Nonetheless Z has open components and no proper nonempty H-closed sub-

spaces, therefore Z is connectifiable.

Remarks. (i) If L is the long line, then X = L ⊕ L is a ZFC example of a con-
nectifiable hereditarily normal space of cardinality c which has proper nonempty
feebly compact clopen subsets.

(ii) In [10] it is shown that, underMA+¬CH , a disconnected perfectly normal
space with no more than 2c clopen subsets is connectifiable if and only if no
nonempty clopen subset is relatively pseudocompact.
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