A remark on localized weak precompactness in Banach spaces

Minoru Matsuda

Abstract. We give a characterization of K-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions.

Keywords: K-weakly precompact set, uniform Gateaux differentiability Classification: 46B07, 46B22, 49J50

We begin with the requisite definition. Throughout this paper X denotes a real Banach space with topological dual X^* . If $g: X \to \mathbb{R}$ is a continuous convex function, for $x, y \in X$, we define Dg(x, y) by

$$\lim_{t \to 0} \{g(x+ty) - g(x)\}/t$$

provided that this limit exists, and we also define the subdifferential of g at $x (\in X)$ to be the set $\partial g(x)$ of all elements x^* of X^* satisfying that $(u, x^*) \leq g(x + u) - g(x)$ for any $u \in X$. Then $\partial g(x)$ is a non-empty weak*-compact convex subset of X^* for every $x \in X$. The triple (I, Λ, λ) refers to the Lebesgue measure space on $I (= [0, 1]), \Lambda^+$ to the sets in Λ with positive λ -measure. We always understand that I is endowed with Λ and λ . We denote the set $\{\chi_E/\lambda(E) : E \in \Lambda^+\}$ by $\Delta(I)$. A function $f: I \to X^*$ is said to be weak*-measurable if (x, f(t)) is λ -measurable for each $x \in X$. If $f: I \to X^*$ is a bounded weak*-measurable function, we obtain a bounded linear operator $T_f: X \to L_1(I, \Lambda, \lambda)$ given by $T_f(x) = x \circ f$ for every $x \in X$, where $(x \circ f)(t) = (x, f(t))$ for every $t \in I$, and the dual operator of T_f is denoted by T_f^* $(: L_{\infty}(I, \Lambda, \lambda) \to X^*)$.

According to Bator and Lewis [1], let us define the notion of localized weak precompactness in Banach spaces as follows.

Definition 1. Let A be a bounded subset of X and K a weak*-compact subset of X. Then we say that A is K-weakly precompact if every sequence $\{x_n\}_{n\geq 1}$ in A has a pointwise convergent subsequence $\{x_{n(k)}\}_{k\geq 1}$ on K.

Then, in [1], they have made a systematic study of K-weakly precompact sets A in Banach spaces and obtained various characterizations of such sets.

Succeedingly, in our paper [4], we also have obtained measure theoretic characterizations of K-weakly precompact sets A by the effective use of a K-valued

weak^{*}-measurable function constructed in the case where A is non-K-weakly precompact. In this paper we wish to add a characterization of K-weakly precompact sets in terms of uniform Gateaux differentiability of certain continuous convex functions, which is our aim. This can be regarded as a slight generalization and refinement of Corollary 10 in [1]. And it should be noted that even here this K-valued function also becomes an effective means to an end. Before giving our characterization theorem, let us define some special continuous convex functions on X as follows.

Definition 2. Let H be a non-empty bounded subset of X^* . Then the continuous convex function associated with H, which is denoted by g_H , is defined by $g_H(x) = \sup\{(x, x^*) : x^* \in H\}$ for every $x \in X$.

In what follows, all notations and terminology used and not defined are as in [1].

Let A be a bounded subset of X, K a weak*-compact subset of X^* , $\{x_n\}_{n>1}$ a sequence in A and Y the closed linear span of $\{x_n : n \ge 1\}$ in X. In the following, we always understand that Y is a such space. Let $j: Y \to X$ be the inclusion mapping and j^* its dual mapping. For any non-empty subset H of K, the continuous convex function $q_H: Y \to \mathbb{R}$ satisfies that $\partial q_H(y) \subset \overline{\operatorname{co}}^*(j^*(K))$ for each $y \in Y$. Further let us note two preliminary facts for the proof of Theorem. One concerns separably related sets in the case where A is K-weakly precompact. Let $\{x_n\}_{n\geq 1}$ be a sequence in A and suppose that there exists a subsequence $\{x_{n(k)}\}_{k>1}$ of $\{x_n\}_{n\geq 1}$ such that $\lim_{k\to\infty} (x_{n(k)}, x^*)$ exists for every $x^* \in K$. Then this implies that $\lim_{k\to\infty} (x_{n(k)}, y^*)$ exists for every $y^* \in \overline{\mathrm{co}}^*(j^*(K))$. Hence, by considering the mapping $L: \overline{\operatorname{co}}^*(j^*(K)) \to c$ (the Banach space of all convergent sequences of real numbers equipped with the supremum norm $\|\cdot\|_{\infty}$) defined by $L(y^*) = \{(x_{n(k)}, y^*)\}_{k \ge 1}$, we easily know that $\overline{\operatorname{co}}^*(j^*(K))$ is separably related to $\{x_{n(k)}: k \geq 1\}$, since c is separable. The other concerns the construction of a K-valued weak*-measurable function h and a sequence $\{x_n\}_{n\geq 1}$ in A in the case where A is non-K-weakly precompact. Then, although the construction of this function h and the sequence $\{x_n\}_{n\geq 1}$ in A is exactly the same as in §3 of [4], for the sake of completeness, we state its outline briefly in the following. Since A is not K-weakly precompact, by the celebrated argument of Rosenthal [5], we have a sequence $\{x_n\}_{n\geq 1}$ in A and real numbers r and δ with $\delta > 0$ such that putting $A_n = \{x^* \in K : (\bar{x}_n, x^*) \le r\}$ and $B_n = \{x^* \in K : (x_n, x^*) \ge r + \delta\}, (A_n, B_n)_{n \ge 1}$ is an independent sequence of pairs of weak^{*}-closed subsets of K (that is, for every $\{\varepsilon_j\}_{1 \le j \le k}$ with $\varepsilon_j = 1$ or -1, $\bigcap \{\varepsilon_j A_j : 1 \le j \le k\}$ is a non-empty set, where $\varepsilon_j A_j = A_j$ if $\varepsilon_j = 1$ and $\varepsilon_j A_j = B_j$ if $\varepsilon_j = -1$). Putting $\Gamma = \bigcap_{n>1} (A_n \cup B_n)$, Γ is a non-empty weak*-compact subset of K, since $(A_n, B_n)_{n\geq 1}$ is independent. Define $\varphi: \Gamma \to \mathcal{P}(N)$ (Cantor space, with its usual compact metric topology) by $\varphi(x^*) = \{p : (x_p, x^*) \leq r\} \ (= \{p : A_p \ni x^*\}) \in \mathcal{P}(N)$. Then φ is a continuous surjection from Γ to $\mathcal{P}(N)$ (here, Γ is endowed with the weak*topology $\sigma(X^*, X)$ and so we have a Radon probability measure γ on Γ such that $\varphi(\gamma) = \nu$ (the normalized Haar measure if we identify $\mathcal{P}(N)$ with $\{0,1\}^N$) and $\{f \circ \varphi : f \in L_1(\mathcal{P}(N), \Sigma_{\nu}, \nu)\} = L_1(\Gamma, \Sigma_{\gamma}, \gamma)$ where Σ_{ν} (resp. Σ_{γ}) is the family of all ν (resp. γ)-measurable subsets of $\mathcal{P}(N)$ (resp. Γ). Further, consider a function $\tau : \mathcal{P}(N) \to I$ defined by $\tau(D) = \Sigma\{1/2^m : m \in D\}$ for every $D \in \mathcal{P}(N)$. Then τ is a continuous surjection such that $\tau(\nu) = \lambda$ and $\{u \circ \tau : u \in L_1(I, \Lambda, \lambda)\} = L_1(\mathcal{P}(N), \Sigma_{\nu}, \nu)$. Then, making use of the lifting theory, we have a weak*-measurable function $h : I \to \Gamma (\subset K)$ such that

(
$$\alpha$$
) $\rho(x \circ h)(t) = (x, h(t))$ for every $x \in X$ and every $t \in I$

(
$$\beta$$
)
$$\int_E (x,h(t)) d\lambda(t) = \int_{\varphi^{-1}(\tau^{-1}(E))} (x,x^*) d\gamma(x^*)$$

for every $E \in \Lambda$ and every $x \in X$. Here ρ denotes a lifting on $L_{\infty}(I, \Lambda, \lambda)$.

Now we are ready to state our characterization theorem (a localized version of Theorem 8 in [1]). Its main part is that (3) implies (1), whose proof is significant in the point that the characters of the K-valued function h and the sequence $\{x_n\}_{n\geq 1}$ in A obtained above are used concretely and effectively. And there, we can get a result that for every $y \in Y$ and every subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$, $Dg_H(y, x_{n(k)})$ does not exist uniformly in k, where $H = h(I) (\subset K)$.

Theorem. Let A be a bounded subset of X and K a weak*-compact (not necessarily convex) subset of X^* . Then the following statements about A and K are equivalent.

(1) The set A is K-weakly precompact.

(2) If $\{x_n\}_{n\geq 1}$ is a sequence in A and $g: Y \to \mathbb{R}$ is a continuous convex function such that $\partial g(y) \subset \overline{\operatorname{co}}^*(j^*(K))$ for every $y \in Y$, then there exists a dense G_{δ} -subset G of Y and a subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that $Dg(y, x_{n(k)})$ exists uniformly in k for each $y \in G$.

(3) If $\{x_n\}_{n\geq 1}$ is a sequence in A and H is a non-empty subset of K, then there exists an element y of Y and a subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that $Dg_H(y, x_{n(k)})$ exists uniformly in k.

PROOF: (1) \Rightarrow (2). The proof is analogous to that of the corresponding part of Theorem 8 in [1]. Suppose that (1) holds. Take any sequence $\{x_n\}_{n\geq 1}$ in Aand any continuous convex function $g: Y \to \mathbb{R}$ such that $\partial g(y) \subset \overline{\operatorname{co}}^*(j^*(K))$ for every $y \in Y$. As A is K-weakly precompact, we have a subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ such that $\lim_{k\to\infty}(x_{n(k)}, x^*)$ exists for every $x^* \in K$. Therefore, by the first preliminary fact preceding Theorem, $\overline{\operatorname{co}}^*(j^*(K))$ is separably related to B $(=\{x_{n(k)}:k\geq 1\})$. So it is separably related to $\operatorname{aco}(B)$ (: the absolutely convex hull of B). Since $\partial g(y) \subset \overline{\operatorname{co}}^*(j^*(K))$ for every $y \in Y$, by the same argument as in Theorem 3.14 and Proposition 3.15 of [2], we have a dense G_{δ} -subset G of Ysuch that g is $\operatorname{aco}(B)$ -differentiable (cf. [2]) at every $y \in G$, whence (2) holds.

(2) \Rightarrow (3). This follows immediately from the fact that $\partial g_H(y) \subset \overline{\operatorname{co}}^*(j^*(K))$ for every non-empty subset H of K and every $y \in Y$.

M. Matsuda

 $(3) \Rightarrow (1)$. The proof of this part is crucial. Suppose that (1) fails. By the second preliminary fact preceding Theorem, we have a function $h: I \to K$ and a sequence $\{x_n\}_{n\geq 1}$ in A as stated above. Take H = h(I), and let $\{U(n,k) : n = 0, 1, \ldots; k = 0, \ldots, 2^n - 1\}$ be a system of open intervals in I given by $U(n,k) = (k/2^n, (k+1)/2^n)$ if $n \geq 0, 0 \leq k \leq 2^n - 1$. Then we get that $\varphi^{-1}(\tau^{-1}(U(n,2k))) \subset B_n$ and $\varphi^{-1}(\tau^{-1}(U(n,2k+1))) \subset A_n$ for $n = 1, 2, \ldots$ and $k = 0, \ldots, 2^{n-1} - 1$. Further we note a following elementary fact: Let $E \in \Lambda^+$ and $\{n(i)\}_{i\geq 1}$ be a strictly increasing sequence of natural numbers. Then there exists a natural number i and a non-negative number q with $0 \leq 2q < 2^{n(i)} - 1$ such that both $E \cap U(n(i), 2q)$ and $E \cap U(n(i), 2q + 1)$ are in Λ^+ , which can be easily shown by an argument used in Lemma 2 of [3].

Now, let us show that for every subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$ and every $y \in Y$, $Dg_H(y, x_{n(k)})$ does not exist uniformly in k. To this end, take any point y in Y and any subsequence $\{x_{n(k)}\}_{k\geq 1}$ of $\{x_n\}_{n\geq 1}$, and set $y_k = x_{n(k)}$ for every k. Consider a family of weak*-open slices of $\overline{\operatorname{co}}^*(j^*(T_h^*(\Delta(I)))) (= M) : \{S(y, \delta/3i, M) : i \geq 1\}$. Then we have that for every i

$$S(y, \delta/3i, M) = \left\{ y^* \in M : (y, y^*) > \sup_{\substack{z^* \in M}} (y, z^*) - \delta/3i \right\}$$

= $\left\{ y^* \in M : (y, y^*) > \operatorname{ess-sup}_{t \in I} (j(y), h(t)) - \delta/3i \right\}$
= $\left\{ y^* \in M : (y, y^*) > g_H(y) - \delta/3i \right\}$,

since $g_H(y) = \sup_{t \in I}(j(y), h(t)) = \operatorname{ess-sup}_{t \in I}(j(y), h(t))$ by virtue of (α) above. So, letting $E_i = \{t \in I : (j(y), h(t)) > g_H(y) - \delta/3i\}$, we easily get that $E_i \in \Lambda^+$ and $j^*(h(E_i)) \subset S(y, \delta/3i, M)$ for every *i*. Hence, by the elementary fact stated above, there exists a natural number k(i) and a non-negative number q(i) with $0 \leq 2q(i) < 2^{n(k(i))} - 1$ such that both $E_i \cap U(n(k(i)), 2q(i))$ and $E_i \cap U(n(k(i)), 2q(i) + 1)$ are in Λ^+ . For every *i*, let $F_i = E_i \cap U(n(k(i)), 2q(i))$ and $G_i = E_i \cap U(n(k(i)), 2q(i) + 1)$, and let $u_i^* = j^*(T_h^*(\chi_{F_i}/\lambda(F_i)))$ and $v_i^* = j^*(T_h^*(\chi_{G_i}/\lambda(G_i)))$. Then we have that for every *i*

(a) $(y, u_i^*) > g_H(y) - \delta/3i$ and $(y, v_i^*) > g_H(y) - \delta/3i$,

(b)
$$(y_{k(i)}, u_i^* - v_i^*) \ge \delta$$
,

(c) $g_H(y+y_{k(i)}/i) \ge (y+y_{k(i)}/i, u_i^*)$ and $g_H(y-y_{k(i)}/i) \ge (y-y_{k(i)}/i, v_i^*)$. Indeed, we have that

$$\begin{aligned} (y, u_i^*) &= (j(y), T_h^*(\chi_{F_i}/\lambda(F_i))) \\ &= \Big\{ \int_{F_i} (j(y), h(t)) \, d\lambda(t) \Big\} / \lambda(F_i) > g_H(y) - \delta/3i, \end{aligned}$$

since $j^*(h(F_i)) \subset S(y, \delta/3i, M)$. Similarly, $(y, v_i^*) > g_H(y) - \delta/3i$. Thus we have (a). And we can prove (b) as follows. In virtue of (β) , we have that for

every i

$$\begin{split} &(y_{k(i)}, u_i^* - v_i^*) \\ &= (j(y_{k(i)}), T_h^*(\chi_{F_i}/\lambda(F_i))) - (j(y_{k(i)}), T_h^*(\chi_{G_i}/\lambda(G_i))) \\ &= (j(x_{n(k(i))}), T_h^*(\chi_{F_i}/\lambda(F_i))) - (j(x_{n(k(i))}), T_h^*(\chi_{G_i}/\lambda(G_i))) \\ &= \left\{ \int_{F_i} (j(x_{n(k(i))}), h(t)) \, d\lambda(t) \right\} / \lambda(F_i) \\ &- \left\{ \int_{G_i} (j(x_{n(k(i))}), h(t)) \, d\lambda(t) \right\} / \lambda(G_i) \\ &= \left\{ \int_{\varphi^{-1}(\tau^{-1}(F_i))} (j(x_{n(k(i))}), x^*) \, d\gamma(x^*) \right\} / \lambda(F_i) \\ &- \left\{ \int_{\varphi^{-1}(\tau^{-1}(G_i))} (j(x_{n(k(i))}), x^*) \, d\gamma(x^*) \right\} / \lambda(G_i) \\ &\geq (r + \delta) - r = \delta, \end{split}$$

since $\varphi^{-1}(\tau^{-1}(F_i)) \ (\subset \varphi^{-1}(\tau^{-1}(U(n(k(i)), 2q(i))))) \subset B_{n(k(i))}, \ \varphi^{-1}(\tau^{-1}(G_i)) \ (\subset \varphi^{-1}(\tau^{-1}(U(n(k(i)), 2q(i) + 1)))) \subset A_{n(k(i))} \text{ and } \tau(\varphi(\gamma)) = \lambda.$ As to (c), we have that for every i

$$g_H(y + y_{k(i)}/i) = \sup_{t \in I} (j(y + y_{k(i)}/i), h(t))$$

$$\geq \left\{ \int_{F_i} (j(y + y_{k(i)}/i), h(t)) \, d\lambda(t) \right\} / \lambda(F_i) = (y + y_{k(i)}/i, u_i^*).$$

Similarly, $g_H(y - y_{k(i)}/i) \ge (y - y_{k(i)}/i, v_i^*)$. Then, making use of (a), (b) and (c), we have that for every i

$$\begin{split} g_H(y+y_{k(i)}/i) &+ g_H(y-y_{k(i)}/i) - 2 \cdot g_H(y) \\ &> (y+y_{k(i)}/i, u_i^*) + (y-y_{k(i)}/i, v_i^*) - \{(y, u_i^*+v_i^*) + 2\delta/3i\} \\ &= (y_{k(i)}, u_i^*-v_i^*)/i - 2\delta/3i \ge \delta/3i. \end{split}$$

Consequently, we have that for every i

$$\left\{g_H(y+y_{k(i)}/i) + g_H(y-y_{k(i)}/i) - 2 \cdot g_H(y)\right\}/(1/i) > \delta/3,$$

which implies that $Dg_H(y, x_{n(k)})$ does not exist uniformly in k. Thus the proof is complete.

Acknowledgment. The author is grateful to the referee for suggestions in revising the paper.

M. Matsuda

References

- Bator E.M., Lewis P.W., Weak precompactness and the weak RNP, Bull. Polish Acad. Sci. Math. 37 (1989), 443–452.
- [2] Fitzpatrick S.P., Separably related sets and the Radon-Nikodym property, Illinois J. Math. 29 (1985), 229–247.
- [3] Matsuda M., A characterization of Pettis sets in terms of the Bourgain property, Math. Japon. 41 (1995), 433-439.
- [4] Matsuda M., On localized weak precompactness in Banach spaces, Publ. RIMS, Kyoto Univ. 32 (1996), 473–491.
- [5] Rosenthal H., A characterization of Banach spaces containing l₁, Proc. Nat. Acad. Sci. 71 (1974), 2411–2413.

Department of Mathematics, Faculty of Science, Shizuoka University, Ohya, Shizuoka 422–8529, Japan

E-mail: smmmatu@ipcs.shizuoka.ac.jp

(Received January 21, 1998, revised May 19, 1998)