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A remark on localized weak

precompactness in Banach spaces
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Abstract. We give a characterization of K-weakly precompact sets in terms of uniform
Gateaux differentiability of certain continuous convex functions.
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We begin with the requisite definition. Throughout this paper X denotes a
real Banach space with topological dual X∗. If g : X → R is a continuous convex
function, for x, y ∈ X , we define Dg (x, y) by

lim
t→0

{g(x+ ty)− g(x)}/t

provided that this limit exists, and we also define the subdifferential of g at x
(∈ X) to be the set ∂g(x) of all elements x∗ of X∗ satisfying that (u, x∗) ≤ g(x+
u)−g(x) for any u ∈ X . Then ∂g(x) is a non-empty weak∗-compact convex subset
of X∗ for every x ∈ X . The triple (I,Λ, λ) refers to the Lebesgue measure space
on I (= [0, 1]), Λ+ to the sets in Λ with positive λ-measure. We always understand
that I is endowed with Λ and λ. We denote the set {χE/λ(E) : E ∈ Λ+} by ∆(I).
A function f : I → X∗ is said to be weak∗-measurable if (x, f(t)) is λ-measurable
for each x ∈ X . If f : I → X∗ is a bounded weak∗-measurable function, we obtain
a bounded linear operator Tf : X → L1(I,Λ, λ) given by Tf (x) = x ◦ f for every
x ∈ X , where (x ◦ f)(t) = (x, f(t)) for every t ∈ I, and the dual operator of Tf is
denoted by T ∗

f (: L∞(I,Λ, λ)→ X∗).

According to Bator and Lewis [1], let us define the notion of localized weak
precompactness in Banach spaces as follows.

Definition 1. Let A be a bounded subset of X and K a weak∗-compact subset
of X . Then we say that A is K-weakly precompact if every sequence {xn}n≥1 in

A has a pointwise convergent subsequence {xn(k)}k≥1 on K.

Then, in [1], they have made a systematic study of K-weakly precompact sets
A in Banach spaces and obtained various characterizations of such sets.
Succeedingly, in our paper [4], we also have obtained measure theoretic cha-

racterizations of K-weakly precompact sets A by the effective use of a K-valued
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weak∗-measurable function constructed in the case where A is non-K-weakly pre-
compact. In this paper we wish to add a characterization ofK-weakly precompact
sets in terms of uniform Gateaux differentiability of certain continuous convex
functions, which is our aim. This can be regarded as a slight generalization and
refinement of Corollary 10 in [1]. And it should be noted that even here this
K-valued function also becomes an effective means to an end. Before giving our
characterization theorem, let us define some special continuous convex functions
on X as follows.
Definition 2. Let H be a non-empty bounded subset of X∗. Then the contin-

uous convex function associated with H , which is denoted by gH , is defined by

gH(x) = sup{(x, x∗) : x∗ ∈ H} for every x ∈ X .

In what follows, all notations and terminology used and not defined are as
in [1].
Let A be a bounded subset of X , K a weak∗-compact subset of X∗, {xn}n≥1 a

sequence in A and Y the closed linear span of {xn : n ≥ 1} in X . In the following,
we always understand that Y is a such space. Let j : Y → X be the inclusion map-
ping and j∗ its dual mapping. For any non-empty subset H of K, the continuous
convex function gH : Y → R satisfies that ∂gH(y) ⊂ co

∗(j∗(K)) for each y ∈ Y .
Further let us note two preliminary facts for the proof of Theorem. One concerns
separably related sets in the case where A is K-weakly precompact. Let {xn}n≥1
be a sequence in A and suppose that there exists a subsequence {xn(k)}k≥1 of

{xn}n≥1 such that limk→∞(xn(k), x
∗) exists for every x∗ ∈ K. Then this im-

plies that limk→∞(xn(k), y
∗) exists for every y∗ ∈ co∗(j∗(K)). Hence, by con-

sidering the mapping L : co∗(j∗(K)) → c (the Banach space of all convergent
sequences of real numbers equipped with the supremum norm ‖ · ‖∞) defined by
L(y∗) = {(xn(k), y

∗)}k≥1, we easily know that co
∗(j∗(K)) is separably related to

{xn(k) : k ≥ 1}, since c is separable. The other concerns the construction of a

K-valued weak∗-measurable function h and a sequence {xn}n≥1 in A in the case
where A is non-K-weakly precompact. Then, although the construction of this
function h and the sequence {xn}n≥1 in A is exactly the same as in § 3 of [4], for
the sake of completeness, we state its outline briefly in the following. Since A is
not K-weakly precompact, by the celebrated argument of Rosenthal [5], we have
a sequence {xn}n≥1 in A and real numbers r and δ with δ > 0 such that putting
An = {x∗ ∈ K : (xn, x∗) ≤ r} andBn = {x∗ ∈ K : (xn, x∗) ≥ r+δ}, (An, Bn)n≥1
is an independent sequence of pairs of weak∗-closed subsets ofK (that is, for every
{εj}1≤j≤k with εj = 1 or −1,

⋂

{εjAj : 1 ≤ j ≤ k} is a non-empty set, where
εjAj = Aj if εj = 1 and εjAj = Bj if εj = −1). Putting Γ =

⋂

n≥1(An ∪ Bn),

Γ is a non-empty weak∗-compact subset of K, since (An, Bn)n≥1 is indepen-
dent. Define ϕ : Γ → P(N) (Cantor space, with its usual compact metric topol-
ogy) by ϕ(x∗) = {p : (xp, x

∗) ≤ r} (= {p : Ap ∋ x∗}) ∈ P(N). Then ϕ is
a continuous surjection from Γ to P(N) (here, Γ is endowed with the weak∗-
topology σ(X∗, X)) and so we have a Radon probability measure γ on Γ such

that ϕ(γ) = ν (the normalized Haar measure if we identify P(N) with {0, 1}N)
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and {f ◦ ϕ : f ∈ L1(P(N),Σν , ν)} = L1(Γ,Σγ , γ) where Σν (resp. Σγ) is the
family of all ν (resp. γ)-measurable subsets of P(N) (resp. Γ). Further, con-
sider a function τ : P(N) → I defined by τ(D) = Σ{1/2m : m ∈ D} for
every D ∈ P(N). Then τ is a continuous surjection such that τ(ν) = λ and
{u ◦ τ : u ∈ L1(I,Λ, λ)} = L1(P(N),Σν , ν). Then, making use of the lifting
theory, we have a weak∗-measurable function h : I → Γ (⊂ K) such that

ρ(x ◦ h)(t) = (x, h(t)) for every x ∈ X and every t ∈ I,(α)
∫

E
(x, h(t)) dλ(t) =

∫

ϕ−1(τ−1(E))
(x, x∗) dγ(x∗)(β)

for every E ∈ Λ and every x ∈ X . Here ρ denotes a lifting on L∞(I,Λ, λ).
Now we are ready to state our characterization theorem (a localized version of

Theorem 8 in [1]). Its main part is that (3) implies (1), whose proof is significant
in the point that the characters of the K-valued function h and the sequence
{xn}n≥1 in A obtained above are used concretely and effectively. And there,
we can get a result that for every y ∈ Y and every subsequence {xn(k)}k≥1 of

{xn}n≥1, DgH (y, xn(k)) does not exist uniformly in k, where H = h(I) (⊂ K).

Theorem. Let A be a bounded subset of X and K a weak∗-compact (not ne-
cessarily convex) subset of X∗. Then the following statements about A and K
are equivalent.

(1) The set A is K-weakly precompact.

(2) If {xn}n≥1 is a sequence in A and g : Y → R is a continuous convex function

such that ∂g(y) ⊂ co∗(j∗(K)) for every y ∈ Y , then there exists a dense Gδ-subset

G of Y and a subsequence {xn(k)}k≥1 of {xn}n≥1 such that Dg (y, xn(k)) exists

uniformly in k for each y ∈ G.

(3) If {xn}n≥1 is a sequence in A and H is a non-empty subset of K, then
there exists an element y of Y and a subsequence {xn(k)}k≥1 of {xn}n≥1 such

that DgH(y, xn(k)) exists uniformly in k.

Proof: (1) ⇒ (2). The proof is analogous to that of the corresponding part
of Theorem 8 in [1]. Suppose that (1) holds. Take any sequence {xn}n≥1 in A
and any continuous convex function g : Y → R such that ∂g(y) ⊂ co∗(j∗(K)) for
every y ∈ Y . As A is K-weakly precompact, we have a subsequence {xn(k)}k≥1 of

{xn}n≥1 such that limk→∞(xn(k), x
∗) exists for every x∗ ∈ K. Therefore, by the

first preliminary fact preceding Theorem, co∗(j∗(K)) is separably related to B
(= {xn(k) : k ≥ 1}). So it is separably related to aco(B) (: the absolutely convex

hull of B). Since ∂g(y) ⊂ co∗(j∗(K)) for every y ∈ Y , by the same argument as
in Theorem 3.14 and Proposition 3.15 of [2], we have a dense Gδ-subset G of Y
such that g is aco(B)-differentiable (cf. [2]) at every y ∈ G, whence (2) holds.

(2) ⇒ (3). This follows immediately from the fact that ∂gH(y) ⊂ co
∗(j∗(K))

for every non-empty subset H of K and every y ∈ Y .
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(3) ⇒ (1). The proof of this part is crucial. Suppose that (1) fails. By the
second preliminary fact preceding Theorem, we have a function h : I → K and
a sequence {xn}n≥1 in A as stated above. Take H = h(I), and let {U(n, k) :
n = 0, 1, . . . ; k = 0, . . . , 2n − 1} be a system of open intervals in I given by
U(n, k) = (k/2n, (k + 1)/2n) if n ≥ 0, 0 ≤ k ≤ 2n − 1. Then we get that
ϕ−1(τ−1(U(n, 2k))) ⊂ Bn and ϕ−1(τ−1(U(n, 2k+1))) ⊂ An for n = 1, 2, . . . and
k = 0, . . . , 2n−1 − 1. Further we note a following elementary fact: Let E ∈ Λ+

and {n(i)}i≥1 be a strictly increasing sequence of natural numbers. Then there

exists a natural number i and a non-negative number q with 0 ≤ 2q < 2n(i) − 1
such that both E ∩ U(n(i), 2q) and E ∩ U(n(i), 2q + 1) are in Λ+, which can be
easily shown by an argument used in Lemma 2 of [3].
Now, let us show that for every subsequence {xn(k)}k≥1 of {xn}n≥1 and every

y ∈ Y , DgH (y, xn(k)) does not exist uniformly in k. To this end, take any point

y in Y and any subsequence {xn(k)}k≥1 of {xn}n≥1 , and set yk = xn(k) for

every k. Consider a family of weak∗-open slices of co∗(j∗(T ∗
h (∆(I)))) (= M) :

{S(y, δ/3i, M) : i ≥ 1}. Then we have that for every i

S(y, δ/3i, M) =
{

y∗ ∈ M : (y, y∗) > sup
z∗∈M

(y, z∗)− δ/3i
}

=
{

y∗ ∈ M : (y, y∗) > ess-sup
t∈I

(j(y), h(t)) − δ/3i
}

=
{

y∗ ∈ M : (y, y∗) > gH(y)− δ/3i
}

,

since gH(y) = supt∈I (j(y), h(t)) = ess-supt∈I (j(y), h(t)) by virtue of (α) above.
So, letting Ei = {t ∈ I : (j(y), h(t)) > gH(y) − δ/3i}, we easily get that Ei ∈
Λ+ and j∗(h(Ei)) ⊂ S(y, δ/3i, M) for every i. Hence, by the elementary fact
stated above, there exists a natural number k(i) and a non-negative number q(i)

with 0 ≤ 2q(i) < 2n(k(i)) − 1 such that both Ei ∩ U(n(k(i)), 2q(i)) and Ei ∩
U(n(k(i)), 2q(i) + 1) are in Λ+. For every i, let Fi = Ei ∩ U(n(k(i)), 2q(i))
and Gi = Ei ∩ U(n(k(i)), 2q(i) + 1), and let u∗i = j∗(T ∗

h (χFi
/λ(Fi))) and v∗i =

j∗(T ∗
h(χGi

/λ(Gi))). Then we have that for every i

(a) (y, u∗i ) > gH(y)− δ/3i and (y, v∗i ) > gH(y)− δ/3i,
(b) (yk(i), u

∗
i − v∗i ) ≥ δ,

(c) gH(y + yk(i)/i) ≥ (y + yk(i)/i, u∗i ) and gH(y − yk(i)/i) ≥ (y − yk(i)/i, v∗i ).

Indeed, we have that

(y, u∗i ) = (j(y), T
∗
h (χFi

/λ(Fi)))

=
{

∫

Fi

(j(y), h(t)) dλ(t)
}

/λ(Fi) > gH(y)− δ/3i,

since j∗(h(Fi)) ⊂ S(y, δ/3i, M). Similarly, (y, v∗i ) > gH(y) − δ/3i. Thus we
have (a). And we can prove (b) as follows. In virtue of (β), we have that for
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every i

(yk(i), u
∗
i − v∗i )

= (j(yk(i)), T
∗
h (χFi

/λ(Fi)))− (j(yk(i)), T
∗
h (χGi

/λ(Gi)))

= (j(xn(k(i))), T
∗
h (χFi

/λ(Fi))) − (j(xn(k(i))), T
∗
h (χGi

/λ(Gi)))

=
{

∫

Fi

(j(xn(k(i))), h(t)) dλ(t)
}

/λ(Fi)

−
{

∫

Gi

(j(xn(k(i))), h(t)) dλ(t)
}

/λ(Gi)

=
{

∫

ϕ−1(τ−1(Fi))
(j(xn(k(i))), x

∗) dγ(x∗)
}

/λ(Fi)

−
{

∫

ϕ−1(τ−1(Gi))
(j(xn(k(i))), x

∗) dγ(x∗)
}

/λ(Gi)

≥ (r + δ)− r = δ,

since ϕ−1(τ−1(Fi)) (⊂ ϕ−1(τ−1(U(n(k(i)), 2q(i))))) ⊂ Bn(k(i)), ϕ−1(τ−1(Gi))

(⊂ ϕ−1(τ−1(U(n(k(i)), 2q(i) + 1)))) ⊂ An(k(i)) and τ(ϕ(γ)) = λ. As to (c), we

have that for every i

gH(y + yk(i)/i) = sup
t∈I
(j(y + yk(i)/i), h(t))

≥
{

∫

Fi

(j(y + yk(i)/i), h(t)) dλ(t)
}

/λ(Fi) = (y + yk(i)/i, u∗i ).

Similarly, gH(y − yk(i)/i) ≥ (y − yk(i)/i, v∗i ). Then, making use of (a), (b) and

(c), we have that for every i

gH(y + yk(i)/i) + gH(y − yk(i)/i)− 2 · gH(y)

> (y + yk(i)/i, u∗i ) + (y − yk(i)/i, v∗i )− {(y, u∗i + v∗i ) + 2δ/3i}

= (yk(i), u
∗
i − v∗i )/i − 2δ/3i ≥ δ/3i.

Consequently, we have that for every i

{

gH(y + yk(i)/i) + gH(y − yk(i)/i)− 2 · gH(y)
}

/(1/i) > δ/3,

which implies that DgH(y, xn(k)) does not exist uniformly in k. Thus the proof

is complete. �
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