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On the solvability of commutative

loops and their multiplication groups

Kari Myllylä, Markku Niemenmaa

Abstract. We investigate the situation when the inner mapping group of a commutative
loop is of order 2p, where p = 4t+3 is a prime number, and we show that then the loop
is solvable.
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Introduction

A groupoid Q is called a loop if Q has a unique division and a neutral element
(thus loops are nonassociative versions of groups). The mappings La(x) = ax
and Ra(x) = xa are permutations on Q for every a ∈ Q and the permutation
group M(Q) = 〈La, Ra : a ∈ Q〉 is called the multiplication group of Q. The
stabilizer of the neutral element is denoted by I(Q) and we say that I(Q) is the
inner mapping group of Q. This link between loop theory and group theory was
established by Bruck [1] and he was the first to investigate the properties of loops
by using the corresponding multiplication groups. One of those properties that
we are interested in, is the solvability of loops. Recall that a loop Q is solvable if
it has a series Q = Q0 ≥ · · · ≥ Qn = 1, where Qi is normal in Qi−1 and Qi−1/Qi

is an abelian group.
What then is the relation between a solvable loop Q and its multiplication

groupM(Q)? In 1996 Vesanen [11] showed that the solvability ofM(Q) implies the
solvability of Q if Q is a finite loop. After this it is quite natural to be interested
in those properties of I(Q) which imply the solvability of M(Q). We have been
able to show for a finite loop Q that if I(Q) is abelian or if I(Q) is a dihedral
2-group, then M(Q) is solvable (see [9] and [6]). In [5] we managed to show that
M(Q) is solvable if |I(Q)| = 6 (thus we covered the smallest nonabelian case).
The more general problem, where |I(Q)| = pq (here p and q are prime numbers),
was investigated in [7]. By using the classification of finite simple groups we were
able to show that M(Q) is solvable provided that q = 2 and p ≤ 61, q = 3 and
p ≤ 31, q = 5 and p ≤ 11.
In this short note we consider the case when Q is a finite commutative loop and

|I(Q)| = 2p, where p = 4t+3 is an odd prime. It follows that M(Q) is a solvable
group. Our method — in fact, quite elementary permutation group theory —
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cannot be generalized to the noncommutative case or to the case p = 4t+ 1. We
assume that a more complicated machinery is needed here.
Many properties of loops can be reduced to the properties of connected trans-

versals in the multiplication group and thus our problem can be posed entirely in
group theoretic terms. We give basic information about connected transversals
together with other preliminary lemmas in Section 1. Section 2 contains our main
theorem and the corresponding solvability criteria for finite commutative loops.

1. H-connected transversals

Let G be a group, H ≤ G and A and B be two left transversals to H in G.
We say that the two transversals A and B are H-connected if the commutator
subgroup [A, B] is contained in H . If A = B, then we say that A is an H-
selfconnected transversal in G. By LG(H) we denote the core of H in G. If Q
is a loop, then it is easy to see that A = {La : a ∈ Q} and B = {Ra : a ∈ Q}
are I(Q)-connected transversals in M(Q). Clearly, the core of I(Q) in M(Q) is
trivial. The connection between multiplication groups of commutative loops and
connected transversals is given by

Lemma 1.1. A group G is isomorphic to the multiplication group of a commu-
tative loop if and only if there exist a subgroup H satisfying LG(H) = 1 and an
H-selfconnected transversal A satisfying G = 〈A〉.

For the proof, see [8, Corollary 4.2].

In the following lemmas we assume that G is a group, H ≤ G and A is an
H-selfconnected transversal in G.

Lemma 1.2. Now A is a left and right transversal to H in G. If LG(H) = 1,
then 1 ∈ A.

Lemma 1.3. If LG(H) = 1, then NG(H) = H × Z(G).

Lemma 1.4. If C ⊆ A and K = 〈H, C〉, then C ⊆ LG(K).

Lemma 1.5. If H is cyclic, then G is solvable.

For the proofs, see [8, p. 113]; [8, Proposition 2.7]; [8, Lemma 2.5 and 6,
Lemma 2.6].
We still need three general group theoretic results for the proof of our main
theorem.

Lemma 1.6. Let G be a finite group and M an abelian subgroup of G. If M is

a maximal subgroup of G, then G is solvable.

For the proof, see [3, Theorem 1].

Lemma 1.7. Let G be a permutation group on a set X . Furthermore, let
fixX(g) = {i ∈ X | g(i) = i}, where g ∈ G. Then the number of orbits of

G on X is 1
|G|

∑
g∈G |fixX(g)|.

For the proof, see [4, Theorem 9.1].
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Lemma 1.8. Let G be a finite group and let Q be an abelian Sylow subgroup
contained in the center of its normalizer, or Q ≤ Z(NG(Q)). Then Q has a normal
complement K.

For the proof, see [2, Theorem 7.4.3].

2. Main theorem

Now we shall investigate the following situation: G is a group, H ≤ G and A
is an H-selfconnected transversal in G. We also assume that |H | = 2p, where p
is an odd prime number. We shall next introduce our main theorem.

Theorem 2.1. If H ≤ G and |H | = 2p, where p = 4t + 3 is a prime number,
then G is solvable.

Proof: We first assume that G is finite. By Lemma 1.5, we may assume that H
is not abelian. Assume now that G is a minimal counterexample.
If LG(H) > 1, then the group H/LG(H) is cyclic. It is easy to see that the

transversal ALG(H)/LG(H) is H/LG(H)-selfconnected in G/LG(H) and hence
G/LG(H) is solvable by Lemma 1.5. Now H is solvable and so LG(H) is solvable.
Hence G is also solvable and we must assume that LG(H) = 1. Furthermore,
1 ∈ A by Lemma 1.2.
We may continue as in the proof of Theorem 3.1 of [7] and we conclude that H

is a maximal subgroup in G and G is a simple group. We denote by P the Sylow
p-subgroup of H and by Q a Sylow 2-subgroup of H .
Now P is a Sylow p-subgroup of G and NG(P ) = H , so [G : H ] = 1 + kp. If

1 + kp is an odd number, then Q is a Sylow 2-subgroup of G and by Lemma 1.8
Q has a normal complement. Because the group G is simple we assume that k
is an odd number. We can consider G as a permutation group acting on the set
with 1 + kp points, and H is a one point stabilizer. Now H stabilizes one point
and in the action of H on the remaining kp points the orbits have length p or
2p. Assume that all orbits have length p. If we consider one orbit it is clear that
H acts transitively on the p points. By Lemma 1.7 every involution of H must
fix one and only one point in the orbit. Thus, if y ∈ H is an involution, y is a
product of k(p − 1)/2 = k(2t + 1) distinct transpositions. But then y is an odd
permutation, which is a contradiction, since G contains only even permutations.
Thus we can assume that there exists at least one orbit of length 2p. Therefore we
have 1 6= d ∈ A such that H ∩ Hd = 1. Since A is both left and right transversal
we get that also A−1 is both left and right transversal and so we have a ∈ A such

that H ∩ Ha−1

= 1.
If a, b ∈ A and H ∩ Ha−1

= 1, then we have a unique g(a, b) ∈ A such that
abH = g(a, b)H . If we write h(a, b) = g(a, b)−1ab, then h(a, b) ∈ H . In addition,
since A is H-selfconnected in G, we conclude that h(a, b)aH = g(a, b)−1abaH =
g(a, b)−1aabH = g(a, b)−1ag(a, b)H = aH . Thus h(a, b)aH = aH and h(a, b) ∈

Ha−1

, hence h(a, b) ∈ H∩Ha−1

= 1 and g(a, b) = ab ∈ A. This means that ab ∈ A
whenever b ∈ A. Thus a2 ∈ A, hence [a2, b] = a−2b−1a2b = a−1[a, b]b−1ab ∈ H .
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Then H = a−1[a, b]b−1abH = a−1[a, b]b−1baH = a−1[a, b]aH and so [a, b] ∈

Ha−1

. From this it follows that [a, b] ∈ H ∩ Ha−1

= 1 or ab = ba for each b ∈ A.
If G = 〈A〉, then a ∈ Z(G), a contradiction because G is simple. With the

same argument the case [G : 〈A〉] = 2 is not possible. If [G : 〈A〉] = p, then we
can consider G as a permutation group on the set with p points. It is clear that
involutions from H are products of (p−1)/2 transpositions, which is not possible.
Thus we are left with the case that [G : 〈A〉] = 2p. But then 〈A〉 = A and since
[A, A] ≤ A ∩ H = 1, it follows that A is an abelian group. Thus G = AH , where
A is an abelian group. Let M be a maximal subgroup of G which contains A.
As before, [G : M ] = 2 and [G : M ] = p are not possible. If [G : M ] = 2p,
then M = A and G has an abelian maximal subgroup, hence G is solvable by
Lemma 1.6, a contradiction. This means that G is solvable in the case that G is
a finite group.
Next we prove that our theorem also holds when G is infinite. If LG(H) > 1,

then H/LG(H) is cyclic and thus G/LG(H) is solvable by Lemma 1.5 and hence
G is also solvable. From now on we assume that LG(H) = 1.
First assume that G = 〈A〉. Let a be a fixed element of A and h a fixed element

of H and write F (a, h) = {b ∈ A : a−1b−1ab = h}. If b and c are elements of
F (a, h), then bc−1 ∈ CG(a) and b ∈ CG(a)c. Thus F (a, h) ⊆ CG(a)bh, where
bh is a fixed element from F (a, h), and A =

⋃
F (a, h), where h goes through

all the elements of H . Now G = AH ⊆ CG(a){bh : h ∈ H}H and thus [G :

CG(a)] ≤ |H |2. It follows that [G : CG(H)] is finite, whence [G : NG(H)] is also
finite. By Lemma 1.3 NG(H) = H × Z(G) and thus [G : Z(G)] is finite. Clearly
HZ(G)/Z(G) is of order 2p and the set AZ(G)/Z(G) contains a subset which is
an HZ(G)/Z(G)-selfconnected transversal in G/Z(G). Hence we conclude by the
first part of our proof that G/Z(G) and G are solvable.
Then let K = 〈A〉 be a proper subgroup of G. Hence A is K ∩H-selfconnected

in K and thus K is a solvable group. Now [G : K] is finite and we have a normal
subgroup LG(K) ≤ K such that [G : LG(K)] is finite. Since HLG(K)/LG(K) is
cyclic or of order 2p, it follows that G/LG(K) is solvable. Now LG(K) is solvable
and therefore G is solvable. The proof is complete. �

From Lemma 1.1 and Theorem 2.1 we conclude that if Q is a commutative
loop and |I(Q)| = 2p, where p = 4t+3 is a prime number, thenM(Q) is solvable.
The following result of Vesanen [11] is of fundamental importance.

Theorem 2.2. Let Q be a finite loop. If M(Q) is solvable, then Q is solvable.

By combining all these results we get

Theorem 2.3. If Q is a finite commutative loop such that |I(Q)| = 2p, where
p = 4t+ 3 is a prime number, then Q is a solvable loop.
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