Absolute countable compactness of products and topological groups

YAN-KUI SONG

Abstract. In this paper, we generalize Vaughan's and Bonanzinga's results on absolute countable compactness of product spaces and give an example of a separable, countably compact, topological group which is not absolutely countably compact. The example answers questions of Matveev [8, Question 1] and Vaughan [9, Question (1)].

Keywords: compact, countably compact, absolutely countably compact, hereditarily absolutely countably compact, topological group Classification: 54D20, 54B10, 54D55

§1. Introduction

By a space, we mean a topological space. Matveev [7] defined a space X to be absolutely countably compact (= acc) if for every open cover \mathcal{U} of X and every dense subspace D of X, there exists a finite subset $F \subseteq D$ such that $\operatorname{St}(F,\mathcal{U}) = X$, where $\operatorname{St}(F,\mathcal{U}) = \bigcup \{ U \in \mathcal{U} : U \cap F \neq \emptyset \}$. He also defined a space X to be hereditarily absolutely countably compact (= hacc) if all closed subspaces of X are acc. Obviously, all compact spaces are hacc and all hacc spaces are acc. Moreover, it is known ([7]) that all acc spaces are countably compact (cf. also [5]). For an infinite cardinal κ , a space X is called *initially* κ -compact if every open cover of X with the cardinality $\leq \kappa$ has a finite subcover. The purpose of this paper is to prove Theorem 1 and Theorem 2 below.

Theorem 1. Let κ be an infinite cardinal. Let X be an initially κ -compact T_3 -space, Y a compact T_2 -space with $t(Y) \leq \kappa$ and A a closed subspace of $X \times Y$. Assume that $A \cap (X \times \{y\})$ is acc for each $y \in Y$ and the projection $\pi_Y : X \times Y \to Y$ is a closed map. Then, the subspace A is acc.

Vaughan [11] proved that

- (i) if X is an acc T₃-space and Y is a sequential, compact T₂-space, then X × Y is acc, and
- (ii) if X is an ω -bounded, acc T_3 -space and Y is a compact T_2 -space with $t(Y) \leq \omega$, then $X \times Y$ is acc.

Further, Bonanzinga [2] proved that the above theorems (i) and (ii) remain true if "acc" is replaced by "hacc". In Section 2, we prove Theorem 1 and show that Vaughan's theorems (i), (ii) and Bonanzinga's theorems are deduced from

Theorem 1. Matveev [8] asked if there exists a separable, countably compact, topological group which is not acc. Vaughan [10] asked the same question and showed that the answer is positive if there is a separable, sequentially compact T_2 -group which is not compact. Form this point of view, he also asked if there exists a separable, sequentially compact T_2 -group which is not compact. Theorem 2 below, which is a joint work with Ohta, answers the former question positively and show that the latter question has a positive answer under extra set theoretic assumptions. The latter question remains open in ZFC. Let \mathfrak{s} denote the splitting number, i.e., $\mathfrak{s} = \min{\{\kappa : \text{the power } 2^{\kappa} \text{ is not sequentially compact}\}}$ (cf. [3, Theorem 6.1]).

Theorem 2 (Ohta-Song). There exists a separable, countably compact T_2 -group which is not acc. If $2^{\omega} < 2^{\omega_1}$ and $\omega_1 < \mathfrak{s}$, then there exists a separable, sequentially compact T_2 -group which is not acc.

It was shown in the proof [3, Theorem 5.4] that the assumption that $2^{\omega} < 2^{\omega_1}$ and $\omega_1 < \mathfrak{s}$ is consistent with ZFC. Theorem 2 will be proved in Section 3.

Remark 1. Matveev kindly informed Ohta that a similar theorem to Theorem 2 above was proved independently by W. Pack in his Ph. D. thesis at the University of Oxford (1997).

For a set A, |A| denotes the cardinality of A. As usual, a cardinal is the initial ordinal and an ordinal is the set of smaller ordinals. Other terms and symbols will be used as in [4].

\S 2. Proof of Theorem 1 and corollaries

Throughout this section, κ stands for an infinite cardinal. For a set A, let $[A]^{\leq \kappa} = \{B : B \subseteq A, |B| \leq \kappa\}$ and $[A]^{<\kappa} = \{B : B \subseteq A, |B| < \kappa\}$. Let A be a subset of a space X. Arhangel'skii [1] defined the κ -closure of A in X by κ -cl_X $A = \cup \{cl_X B : B \in [A]^{\leq \kappa}\}$. A subset A is said to be κ -closed in X if $A = \kappa$ -cl_XA. By the definition, κ -cl_XA is κ -closed in X. We omit an easy proof of the following lemma.

Lemma 3. Let X be a space. Then, $t(X) \leq \kappa$ if and only if every κ -closed set in X is closed.

Lemma 4. Let X and Y be spaces such that $\pi_Y : X \times Y \to Y$ is a closed map. Then, $\pi_Y(A)$ is κ -closed in Y for each κ -closed set A in $X \times Y$.

PROOF: Let A be a κ -closed set in $X \times Y$. To show that $\pi_Y(A)$ is κ -closed in Y, let $y \in \kappa$ -cl_Y $\pi_Y(A)$. Then, there is $B \in [\pi_Y(A)]^{\leq \kappa}$ such that $y \in cl_Y B$. Choose a point $\langle x_z, z \rangle \in A$ for each $z \in B$ and let $C = \{\langle x_z, z \rangle : z \in B\}$. Since $C \in [A]^{\leq \kappa}$ and A is κ -closed in $X \times Y$, $cl_{X \times Y} C \subseteq A$. Since $\pi_Y(C) = B$ and π_Y is closed, then $y \in cl_Y B = \pi_Y(cl_{X \times Y} C) \subseteq \pi_Y(A)$. Hence, κ -cl_Y $(\pi_Y(A)) = \pi_Y(A)$. PROOF OF THEOREM 1: The proof is a slight variation of Vaughan's proofs [11, Theorems 1.3 and 1.4]. Suppose on the contrary that A is not acc. Then, there exist an open cover \mathcal{U} of A and a dense subset D of A such that $A \not\subseteq \operatorname{St}(B,\mathcal{U})$ for each $B \in [D]^{<\omega}$. Since $X \times Y$ is initially κ -compact, A is initially κ -compact, which implies that $A \not\subseteq \operatorname{St}(B,\mathcal{U})$ for each $B \in [D]^{\leq \kappa}$. For each $B \in [D]^{\leq \kappa}$, define $F_B = \pi_Y(A \setminus \operatorname{St}(B,\mathcal{U}))$. Since π_Y is closed, F_B is closed in Y. Thus, $\mathcal{F} = \{F_B : B \in [D]^{\leq \kappa}\}$ is a filter base of closed subsets in Y. By compactness of Y, there exists a point $y \in \bigcap\{F_B : B \in [D]^{\leq \kappa}\}$. Let $L = A \cap (X \times \{y\})$. Then,

(1)
$$L \not\subseteq \operatorname{St}(B, \mathcal{U}) \text{ for each } B \in [D]^{\leq \kappa}$$

Further, let $K = (\kappa \operatorname{-cl}_{X \times Y} D) \cap (X \times \{y\})$. We show that K is not dense in L. To show this, suppose that K is dense in L. Since L is acc by the assumption, there is $E \in [K]^{<\omega}$ such that $L \subseteq \operatorname{St}(E, \mathcal{U})$. For each $p \in E$, since $p \in K \subseteq \kappa \operatorname{-cl}_{X \times Y} D$, there is $A_p \in [D]^{\leq \kappa}$ such that $p \in \operatorname{cl}_{X \times Y} A_p$. Let $B_0 = \cup \{A_p : p \in E\}$. Then, $B_0 \in [D]^{\leq \kappa}$ and $L \subseteq \operatorname{St}(E, \mathcal{U}) \subseteq \operatorname{St}(B_0, \mathcal{U})$, which contradicts (1). Hence, K is not dense in L. Thus, we can find an open set V in X such that

$$(2) (V \times \{y\}) \cap A \neq \emptyset$$

and $(V \times \{y\}) \cap (\kappa \operatorname{-cl}_{X \times Y} D) = \emptyset$. Since X is a T₃-space, we may assume that

(3)
$$(\operatorname{cl}_X V \times \{y\}) \cap (\kappa - \operatorname{cl}_X \times Y D) = \emptyset.$$

Let $Z = \pi_Y((\operatorname{cl}_X V \times Y) \cap (\kappa - \operatorname{cl}_{X \times Y} D))$. Since π_Y is closed, it follows from Lemma 4 that Z is κ -closed in Y. Since $t(Y) \leq \kappa$, Z is closed in Y by Lemma 3. Moreover, $y \notin Z$ by (3). Hence, there is a neighborhood W of y in Y such that $W \cap Z = \emptyset$. By (2), there is a point $\langle x, y \rangle \in (V \times \{y\}) \cap A$. Since

$$\pi_Y^{-1}(W) \cap \left((\operatorname{cl}_X V \times Y) \cap (\kappa \operatorname{-cl}_{X \times Y} D) \right) = \emptyset,$$

 $(V \times W) \cap D = \emptyset$. Since $V \times W$ is a neighborhood of $\langle x, y \rangle \in A$, this contradicts the fact that D is dense in A.

The following corollary directly follows from Theorem 1.

Corollary 5. Let X be an initially κ -compact, acc (resp. hacc) T_3 -space and Y a compact T_2 -space with $t(Y) \leq \kappa$. Assume that $\pi_Y : X \times Y \to Y$ is a closed map. Then, $X \times Y$ is acc (resp. hacc).

Since an acc space is countably compact (i.e., initially ω -compact), we have the following corollary from Corollary 5:

Corollary 6. Let X be an acc (resp. hacc) T_3 -space and Y a compact T_2 -space with $t(Y) \leq \omega$. Assume that $\pi_Y : X \times Y \to Y$ is a closed map. Then, $X \times Y$ is acc (resp. hacc).

It is known (cf. [4, Theorem 3.10.7]) that if X is countably compact and Y is sequential, then $\pi_Y : X \times Y \to Y$ is closed. Hence, we have the following corollary, which is Vaughan's theorem (i) stated in the introduction and Bonanzinga's theorem [2, Theorem 1.1]:

Corollary 7 (Vaughan [11] and Bonanzinga [2]). Let X be an acc (resp. hacc) T_3 -space and Y a sequential, compact T_2 -space. Then, $X \times Y$ is acc (resp. hacc).

Recall that a space X is κ -bounded if $\operatorname{cl}_X A$ is compact for each $A \in [X]^{\leq \kappa}$. It is known (cf. [9]) that all κ -bounded spaces are initially κ -compact, and Kombarov [6] proved that if X is κ -bounded and $t(Y) \leq \kappa$, then $\pi_Y : X \times Y \to Y$ is closed. Hence, we have the following corollary, which generalizes Vaughan's theorem (ii) stated in the introduction and Bonanzinga's theorem [2, Theorem 2.1].

Corollary 8. Let X be a κ -bounded, acc (resp. hacc) T_3 -space and Y a compact T_2 -space with $t(Y) \leq \kappa$. Then, $X \times Y$ is acc (resp. hacc).

$\S3.$ Proof of Theorem 2

We give two lemmas before proving Theorem 2.

Lemma 9. Let X be a space and Y a space having at least one pair of disjoint non-empty closed subsets. Assume that $X \times Y^{\kappa}$ is acc for an infinite cardinal κ . Then, X is initially κ -compact.

PROOF: Let $\mathcal{U} = \{U_{\gamma} : \gamma < \kappa\}$ be an open cover of X. By the assumption, there are disjoint non-empty closed subsets E and F of Y. Let $D = \{f \in Y^{\kappa} : | \{\alpha < \kappa : f(\alpha) \notin E\} | < \omega\}$; then D is dense in Y^{κ} . Let $V = Y \setminus E$ and $I = F^{\kappa}$. For each $A \in [\kappa]^{<\omega}$, let $V_A = \bigcap_{\alpha \in A} \pi_{\alpha}^{-1}(V)$, where $\pi_{\alpha} : Y^{\kappa} \to Y$ is the α -th projection. Then, V_A is an open neighborhood of I in Y^{κ} . Let $\mathcal{V} = \{V_A : A \in [\kappa]^{<\omega}\}$. Observe that, for each $f \in D$, $f \in V_A$ implies that $A \subseteq \{\alpha < \kappa : f(\alpha) \notin E\}$. This means that \mathcal{V} is point-finite at each point of D. Enumerate the family \mathcal{V} as $\{V_{\gamma} : \gamma < \kappa\}$ and let $\mathcal{W} = \{U_{\gamma} \times V_{\gamma} : \gamma < \kappa\} \cup \{(X \times Y^{\kappa}) \setminus (X \times I)\}$. Since $I \subseteq V_{\gamma}$ for all $\gamma < \kappa$, \mathcal{W} is an open cover of $X \times Y^{\kappa}$. Since $X \times Y^{\kappa}$ is acc, there exists a finite subset M of $X \times D$ such that $X \times Y^{\kappa} = \operatorname{St}(M, \mathcal{W})$. Let $J = \{\gamma < \kappa : (U_{\gamma} \times V_{\gamma}) \cap M \neq \emptyset\}$. Then, $X \times I \subseteq \bigcup \{U_{\gamma} \times V_{\gamma} : \gamma \in J\}$. Since $\mathcal{U}_{\gamma} : \gamma \in J\}$.

We consider $2 = \{0, 1\}$ the discrete group of integers modulo 2. Then, 2^{κ} is a topological group under coordinatewise addition. The following lemma seems to be well known (see [9, 3.5] for the first statement), but we include it here for the sake of completeness.

Lemma 10. There exists a separable, countably compact, non-compact subgroup G_1 of $2^{\mathfrak{c}}$. If $2^{\omega} < 2^{\omega_1}$ and $\omega_1 < \mathfrak{s}$, then there exists a separable, sequentially compact, non-compact subgroup G_2 of 2^{ω_1} .

PROOF: For each $S \subseteq 2^{\mathfrak{c}}$, we define a subgroup G(S) of $2^{\mathfrak{c}}$ as follows: Choose an accumulation point x_A of A in $2^{\mathfrak{c}}$ for each $A \in [S]^{\omega}$. Define G(S) to be the smallest subgroup of $2^{\mathfrak{c}}$ including the set $S \cup \{x_A : A \in [S]^{\omega}\}$. Note that if $|S| \leq \mathfrak{c}$, $|G(S)| \leq \mathfrak{c}$. By transfinite induction, we can define $S_{\alpha} \subseteq 2^{\mathfrak{c}}$ for each $\alpha < \omega_1$ as follows: Let S_0 be a countable dense subset of $2^{\mathfrak{c}}$. Now, assume that $0 < \alpha < \omega_1$ and S_{β} has been defined for all $\beta < \alpha$. If α is a limit, let $S_{\alpha} = \bigcup_{\beta < \alpha} S_{\beta}$. If $\alpha = \beta + 1$, let $S_{\alpha} = G(S_{\beta})$. Define $G_1 = \bigcup_{\alpha < \omega_1} S_{\alpha}$. Then, G_1 is a separable, countably compact subgroup of $2^{\mathfrak{c}}$. Since $|G_1| = \mathfrak{c}$, G_1 is a proper dense subset of $2^{\mathfrak{c}}$. Hence, G_1 is not compact. Next, assume that $2^{\omega} < 2^{\omega_1}$ and $\omega_1 < \mathfrak{s}$. The construction of G_2 is similar to that of G_1 . The only difference is in the definition of x_A . Since $\omega_1 < \mathfrak{s}$, 2^{ω_1} is sequentially compact. Hence, we can choose x_A as a limit point of a sequence in A. Then, $G_2 = \bigcup_{\alpha < \omega_1} S_{\alpha}$ becomes sequentially compact. Since $|G_2| = \mathfrak{c}$ and $2^{\omega} < 2^{\omega_1}$, G_2 is not compact.

PROOF OF THEOREM 2: Let G_1 be the group in Lemma 10. Then, $G_1 \times 2^{\mathfrak{c}}$ is a separable, countably compact T_2 -group. Since G_1 is not compact and $w(G_1) \leq \mathfrak{c}$, G_1 is not initially \mathfrak{c} -compact. Hence, it follows from Lemma 9 that $G_1 \times 2^{\mathfrak{c}}$ is not acc. Next, assume that $2^{\omega} < 2^{\omega_1}$ and $\omega_1 < \mathfrak{s}$, and let G_2 be the group in Lemma 10. Since $\omega_1 < \mathfrak{s}$, 2^{ω_1} is sequentially compact. Hence, $G_2 \times 2^{\omega_1}$ is a separable, sequentially compact T_2 group which is not compact. Since $w(G_2) = \omega_1, G_2 \times 2^{\omega_1}$ is not acc by Lemma 9.

Acknowledgments. The author would like to thank H. Ohta for his allowing him to include Theorem 2 in this paper. He is also indebted to K. Chiba for her helpful suggestions.

References

- Arhangel'skii A.V., On bicompacta hereditarily satisfying Suslin's condition tightness and free sequences, Soviet Math. Dokl. 12 (1971), 1253–1257.
- [2] Bonanzinga M., On the product of a compact space with an hereditarily absolutely countably compact space, Comment. Math. Univ. Carolinae 38 (1997), 557–562.
- [3] van Douwen E.K., The Integer and Topology, Handbook of Set-theoertic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 111–167.
- [4] Engelking R., General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [5] Fleishman W.M., A new extension of countable compactness, Fund. Math. 67 (1970), 1–9.
- [6] Kombarov A.P., On the product of normal spaces, Soviet. Math. Dokl. 13 (4) (1972), 1068–1071.
- [7] Matveev M.V., Absolutely countably compact spaces, Topology Appl. 58 (1994), 81–92.
- [8] Matveev M.V., A countably compact topological group which is not absolutely countably compact, Questions Answers Gen. Topology 11 (1993), 173–176.
- [9] Stephenson R.M., Jr., Initially κ-Compact and Related Space, Handbook of Set-theoertic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 603– 632.
- [10] Vaughan J.E., A countably compact, separable space which is not absolutely countably compact, Comment. Math. Univ. Carolinae 34 (1995), 197–200.

Y.-K. Song

- [11] Vaughan J.E., On the product of a compact space with an absolutely countably compact space, Annals of New York Acad. Soc. 788 (1996), 203–208.
- [12] Vaughan J.E., Countably Compact and Sequentially Compact Spaces, Handbook of Settheoertic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 569–602.

Department of Mathematics, Faculty of Science, Shizuoka University, 836 Ohya, Shizuoka, 422-8529 Japan

(Received April 8, 1998, revised July 2, 1998)