A short proof on lifting of projection properties in Riesz spaces

MAREK WÓJTOWICZ

Abstract. Let L be an Archimedean Riesz space with a weak order unit u. A sufficient condition under which Dedekind $[\sigma$ -]completeness of the principal ideal A_u can be lifted to L is given (Lemma). This yields a concise proof of two theorems of Luxemburg and Zaanen concerning projection properties of C(X)-spaces. Similar results are obtained for the Riesz spaces $B_n(T)$, $n = 1, 2, \ldots$, of all functions of the *n*th Baire class on a metric space T.

 $Keywords\colon$ Dedekind completeness, spaces of continuous functions, spaces of Baire functions

Classification: 46A40, 26A99, 46B30

The purpose of this note is to give a short and concise proof of the following result established by Luxemburg and Zaanen ([3, Theorems 43.2 and 43.3]).

Theorem. Let C(X) and $C_b(X)$, respectively, denote the Riesz spaces of all real continuous and continuous and bounded, respectively, functions on a topological space X. Then the following conditions are equivalent.

- (i) C(X) has the [principal] projection property.
- (ii) C(X) is Dedekind [σ -]complete.
- (iii) $C_b(X)$ has the [principal] projection property.
- (iv) $C_b(X)$ is Dedekind $[\sigma$ -complete.

As remarked in ([3, p. 283]), the only nontrivial implication is (iv) \Rightarrow (ii). Our proof replaces a large part of the direct argument in [3] by an appeal to a lemma (see below), inspired by the classical proof of the Tietze extension theorem ([1, p. 158], the unbounded case).

Let S be a nonempty set. In the rest of the paper L denotes a Riesz subspace of the Riesz space \mathbb{R}^S (pointwise ordering) containing the constant-one on S function e, and B_e denotes the set $\{f \in L : |f(s)| < 1, s \in S\}$. It is obvious that B_e is a (nonlinear) sublattice of A_e . The symbol \circ denotes composition of functions.

Lemma. If there exists a strictly increasing and continuous function ϕ from \mathbb{R} onto (-1,1) such that both

- (a) $\phi \circ f \in B_e$ for every $f \in L$, and
- (b) $\phi^{-1} \circ g \in L$ for every $g \in B_e$,

then L and B_e are order isomorphic as partially ordered sets. In particular, Dedekind $[\sigma-]$ completeness of A_e implies Dedekind $[\sigma-]$ completeness of L.

Examples. 1. If L = C(X) then every strictly increasing, continuous and onto function $\phi : \mathbb{R} \to (-1, 1)$ fulfills both (a) and (b), and the same holds for the Riesz spaces $B_n(T)$, $n = 1, 2, \ldots$, of all functions $T \to \mathbb{R}$ of the *n*th class on a metric space T.

2. If L consists of all continuous and piecewise functions on [0, 1], then ϕ must be piecewise linear to fulfil the condition (a).

PROOF OF LEMMA: By (a) and (b), L and B_e are order isomorphic as partially ordered sets (in the sense of the definition given in [3, p. 186]) via the mapping $\hat{\phi}(f) = \phi \circ f$, $f \in L$. Since, by ([3, Definitions 1.1 and 23.1]), Dedekind $[\sigma$ -]completeness both is invariant under such isomorphisms and is heredited from A_e by B_e , the result follows.

PROOF OF THEOREM (the nontrivial implication (iv) \Rightarrow (ii)): It follows by Lemma and Example 1.

Remark. Since bounded functions of the *n*th Baire class $B_n^b(T)$, n = 1, 2, ...,endowed with the sup-norm form AM-spaces with units ([2, Theorem 12.3.7]), the notions of the [principal] projection property and Dedekind [σ -]completeness coincide (by Theorem). Moreover, Lemma and Example 1 prove that $B_n^b(T)$ and $B_n(T)$ are Dedekind [σ -]complete simultaneously. These observations yield the result similar to that of Theorem when C(X) is replaced by $B_n(T)$ and $C_b(X)$ by $B_n^b(T)$.

References

- Kuratowski K., Introduction to Set Theory and Topology, Polish Scientific Publishers, Warszawa, 1997.
- [2] Kuratowski K., Mostowski A., Set Theory, Polish Scientific Publishers, Warszawa, 1996.
- [3] Luxemburg W.A.J., Zaanen A.C., Riesz Spaces I, North-Holland, Amsterdam, 1971.

Institute of Mathematics, Pedagogical University, Pl. Słowiański 9, $65{-}069$ Zielona Góra, Poland

E-mail: marekw@omega.im.wsp.zgora.pl

(Received May 25, 1998)