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On blow-up and asymptotic behavior of solutions
to a nonlinear parabolic equation of second
order with nonlinear boundary conditions

THEODORE K. BONI

Abstract. We obtain some sufficient conditions under which solutions to a nonlinear
parabolic equation of second order with nonlinear boundary conditions tend to zero or
blow up in a finite time. We also give the asymptotic behavior of solutions which tend
to zero as t — oo. Finally, we obtain the asymptotic behavior near the blow-up time of
certain blow-up solutions and describe their blow-up set.
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1. Introduction

Let Q be a bounded domain in R™ with smooth boundary 092. Consider the
following boundary value problem:

(1.1) a‘g(t”) = Lu—alz,t)f(u) in Qx(0,T),
(1.2) % =b(x,t)g(u) on I x(0,T),
(1.3) u(z,0) =uo(x) in Q,

where

- d%u - ou
Lu = Z a;j(z,t) 7——m— + Z ai(z,t)=— + c(z, t)u + d(z, t),
=1

ou - ou
— = cos(v, xj)a;i(x,t) =—,

v is the exterior normal unit vector on 0€2. The coefficients a;;(x,t), a;(x,t),
c(z,t) and d(x,t) are defined in Q x (0,T). Moreover, a;; satisfy the following

inequality
n

> aij(@ )& > afgf?

1,7=1
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for £ € R™ with positive constant «, a(z,t) is a nonnegative function in Q x (0, 7)),
b(x,t) is a nonnegative function on 9Q x (0, T). Here uy(x) € C1() is a positive
function in 2 which satisfies the compatibility condition %}‘\‘; = b(z,0)g(uo) on ON.
For positive values of s, ¢(s), f(s), g(s) are positive and increasing functions. We
want to determine when the solutions of the problem (1.1)—(1.3) are global, i.e.
defined for every t € (0, 00).

Definition 1.1. We say that a solution u of the problem (1.1)—~(1.3) blows up in
a finite time if there exists a finite time T, such that

1' t oo == .
Jim ua,0) o< ) = o0

The time T, is the blow-up time of the solution u. A point x € Q is a blow-up
point of the solution u if there exists a sequence (xn, ty) such that xy, — x, ty, 1 Tp
and limy,— o0 u(xp, tn) = co. The set

Ep ={x € Q such that z is a blow-up point of the solution u}

is the blow-up set of the solution wu.

The problem of blow-up of solutions to parabolic equations of second order
with nonlinear boundary conditions has been the subject of investigation of many
authors (see, for instance [1], [2], [3], [6] and others). In [3], Egorov and Kondratiev
have considered the problem (1.1)—(1.3). They have given some conditions under
which the solutions of (1.1)—(1.3) exist globally, tend to zero as t — oo or blow
up in a finite time. In [1], we have described the asymptotic behavior of some
solutions of (1.1)—(1.3) which tend to zero as t — oo in the case where p(u) = u,
f(u) = g(u), a(z,t) = a(z) and b(z,t) = b(x). An interesting question of the
problem (1.1)—(1.3) is the localization of the blow-up set. This problem has been
studied in [2] by Fila, Chipot and Quittner in the case where Q C R, o(u) = u,
L =A, a(z,t) = a = const, b(z,t) = 1. In [1], we have generalized some results
of [2] concerning the localization of blow-up set in Q C R™ with n > 1.

In this paper, we generalize the results of [1] considering the problem of the
form (1.1)—(1.3). We also describe the asymptotic behavior of some solutions of
(1.1)—(1.3) which tend to zero as t — oo in the case where p(u) # u, f(u) # g(u)
and precise some results of Egorov and Kondratiev ([3]) in the case of blow-up
solutions.

The paper is written in the following manner. In Section 2, some conditions
of blow-up are given. In Section 3, we obtain some conditions under which the
solutions of the problem (1.1)—(1.3) tend to zero as t — oco. In Section 4, we
give the asymptotic behavior of the solutions which tend to zero as t — oco. In
Section 5, we obtain the asymptotic behavior near the blow-up time of certain
blow-up solutions and finally in Section 6, we describe their blow-up set.
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2. Blow-up solutions
In this section, we suppose that
n
9] ou
=3 2 (agte020).
" Z Ox; aij (@ )&zrj
3,j=1

We give some conditions under which the solutions of the problem (1.1)—(1.3)
blow up in a finite time for any positive initial data.
The following lemma will be useful in the proofs of some theorems below.

Comparison lemma 2.1. Let u,v € C1(Q x [0,T]) N C?(22 x (0,T)) satisfy the
following inequalities:

20— Lu+ (o)) > 250 — Lo+ a(e)f0) i 9 (0.7).
% —b(z,t)g(u) > % —b(x,t)g(v) on 90N x(0,T),

u(z,0) > v(x,0) in Q.

Then we have
u(z,t) >v(z,t) in Qx(0,T).

PrOOF: The function w(z,t) = u(z,t) — v(x,t) is continuous in Q x [0, 7). Then
its minimum value m is attained at a point (x,,%,) € Q x [0,T]. Suppose that
w(xo,to) < v(xo,to). Ift, = 0, then m > 0 which is a contradiction. If 0 < t, < T,
then there exists a t1 such that 0 < ¢1 < ¢, with u(z,t) > v(z,t) in Q x [0, ¢1[ but
u(ry,t1) = v(z1,t1) for some x1 € Q.

If 1 € Q, then we obtain

A(p(u) — ¢(v))
ot
which implies that
A(p(u) — ¢(v))
ot

But, this contradicts the first inequality of the lemma. Finally if z; € 01, then
9w (11,1) < 0. Tt follows that

(Ilatl) < OaLw(Ilvtl) 2 va(u(xlatl)) = f(v(xl,tl)),

(z1,t1) — Lw(z1,t1) + a(xa, t1) [f (u(z1, 1)) — f(v(z1,t1))] < 0.

ow
o (@1 11) = bz, t)lg(ulzy, ) — g(v(zy, 1)) <0,
which contradicts the second inequality of the lemma. Therefore, we have m > 0.

O
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Theorem 2.2. Suppose that for positive values of s, (s ) is positive, increasing,

convex and £ (85) is decreasing. Suppose also that f teo <pg((s)) < 400 and there
exist k > 0, Ty > 0 such that

f(s) <kg(s) for s>0

T* /
/ / :zrtd:c+/ (xtdSmdt>// @ (s)ds
o0 Uo () g(

Then any solution u of the problem (1.1)—(1.3) blows up in a finite time for
uo(x) > 0.

PRrROOF: Let (0,7T) be the maximum time interval in which the solution u of (1.1)—
(1.3) exists. Our aim in this proof is to show that T is finite. Since uq(x) > 0
in Q, from the maximum principle we have u(z,¢) > 0 in Q x (0,7). Put

and

i

T o (s)ds
g(s)

(2.1) o(z,1) = Flu(z, 1)) :/u

The function v is well defined because [ toog ((‘?)ds < 00. Moreover, for positive

values of u, the function F(u) is positive and decreasing. We have

(2.2)
9 1 - 1 1 d o (u) n ou Ou
o T = g PN Bt gy ) 2 i g gy

i,j=1

¢ (w)

Since ¢(u) is increasing and ) is decreasing, from (1.1) and (2.2) we obtain

% — ﬁLv—a(w,t)ch(—Z) <0 in Qx(0,7).

From (1.2) and (2.1), we also have

~—

(2.3)

(2.4) —=— — = =b(z,t)p (u) on I x (0,T).
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From (2.3) and (2.5), we get

Lv(z,t) + a(x, t)&] dx.

g(u)

~—

(26) W)= /Q O

Q¢ (u)

Using Green’s formula, (2.4) and (2.6), we obtain
27 wt)<-— / b(x,t) dSy
oN
P (W' (W) < du du / f(w)
— e e a;i(x,t) =——=——dx+ | a(x,t)— dx.
f Gtoata 2 e 0 g 1 e gt

Since by hypotheses f(u) < kg(u) and ¢(u) is increasing and convex, from (2.7)
it follows that

(2.8) w () < _/aQ bz, t) dS, +l<:/ a(z,t) da.

Q

Integrating (2.8) over (0, s), we deduce that

(2.9) w(s) < w(0) + /05[_ /89 b(x,t) dSy + k/ﬂa(:c,t) dx] dt.

Since v(x, t) is nonnegative and defined in Q x (0, T'), then in virtue of (2.5), w(t) is
also nonnegative and defined for every ¢ € (0,7"). This implies that 7' < T} < oo.
In fact, if Tx < T then by hypothesis, we have

Ty
w(Ty) < /0 [— /89 b(x,t)dSy + k/Qa(x,t) dz]dt + w(0) < 0,

which is a contradiction. Therefore v blows up in a finite time, which yields the

result. O
!

Corollary 2.3. Suppose that f(u) = 0, f+oo f](—(zz))dz < +o00 and for positive

values of s, ¢(s) Is positive, increasing, convex and “Dg((ss)) is decreasing. Suppose

also that there exists Ty > 0 such that

Ty 400 ./
/ / b(:v,t)dxdt>// e ()ds
o Joa Q Juo(z) 9(8)

Then any solution u of the problem (1.1)—(1.3) blows up in a finite time for
uo(x) > 0.
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Corollary 2.4. Suppose that f+°° “Z(—(ZZ)) dz < +o00 and for positive values of s,
¢ (s)

f(s) = g(s), v(s) is positive, increasing, convex and 705) is decreasing. Suppose
also that there exists Ty > 0 such that

/()T*[—/Qa(:v,t)dx—i—/aQb(:v,t)de] dt>/ﬂ/uo+(: ‘plg(é);ls

Then any solution u of the problem (1.1)—(1.3) blows up in a finite time for
uo(z) > 0.

Corollary 2.5. Suppose that o(u) = u™, f(u) = wP, g(u) = u? + u® where
qg>p>s>m—1andq>m > 1. Suppose also that there exists Ty > 0 such
that

/

v (s

/OT*[—/Qa(:z:,t)d:c+/89b(a:,t)d5x]dt>/Q/u:r(: g(s))ds

Then any solution u of the problem (1.1)—(1.3) blows up in a finite time for
uo(x) > 0. If a(x,t) = a(z) > 0, b(x,t) = b(x) > 0, then the last hypothesis is
satisfied when

/ x)dz + b(z)dSz > 0.
o0

3. Global solutions

In this section, we give some conditions under which the solutions of the prob-
lem (1.1)—(1.3) exist globally and tend to zero as t — oo.
Theorem 3.1. Suppose that 0 < b(x,t) < b, < o0, O < a(z,t) < ap < o0,
c(z,t) <0, d(z,t) <0, f(0) =g (0) = 0 and lim,_o & f( € {0, 3} where § is a
positive constant. Suppose also that there exist a function (x) > 0 and positive
constants A, B such that

n

n 2
L= 3 a2l - a2 > —afw ) + A,

ig=1 6$ia$j i 6952-
0 _ (f)
- >
oN = 9 b(x,t) + B,
where ggf) = 0 if limg_,q % = 0 and E =g if hms_)o f = 0. Finally
suppose that for positive values of s, the function g,((ss)) is pos1t1ve, increasing,

lims_,q M = 0 and fo ¢ (2)dz = oo. Then there exists a positive function

o' (s) f(z)
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v(x,t) continuous in Q x [0,00[ and tending to zero as t — oo uniformly in
x € Q such that, if u is a solution of the problem (1.1)—(1.3), the inequality
u(z,0) < v(z,to) (to > 0) implies that u(x,t) < v(x,t +t,) and

lim sup u(z,t) = 0.

=00 ey

Remark 3.2. We have (s)
. (f) _98)y _
limfes” = 5t =0

PROOF OF THEOREM 3.1: Put v(x,t) = a(t) + ¢ (x) f(«(t)) with

i

(3.1) o (at)a (t) = =M f(a(t), a(0) =1,

where A = A — § and 0 < A is a positive constant. Since fo “Df((zz))dz = 400, then

the function a(t) is defined for 0 < ¢ < oo and limy— 4o a(t) = 0. In fact ()
satisfies the following relation:

L op(s)ds
(3.2) /a I

Suppose that there is a finite time T such that «(T) = 0. But this contradicts

(3.2), because [, spf(fs))ds = o0. Therefore, we have lim;_.oc a(t) = 0. We also

have

with {y, 7,2} € [a(t),a(t) + ¥(z)f(a(t))]. Since a'(s) = _Ag,(—fs?) is a decreasing
function, c¢(x,t) <0, d(x,t) <0 and ¥ > 0 satisfies the following inequalities

A= Ly > —alz,t) + 0, % > ePb(a,t) + B,
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we obtain

()t = Lv + alz, 1) f(v) = 6 f(a(t))

’

A (@) f (@) (x) — M) fat)]e (2)] .

M@ a0 (o) L ()] + e i) fae) T ().
= b g(e) = (B + = b, 0)F(a(t) ~ bz H(a(t)

!

— bz, t)(x) falt)g (9)-
Since f'(0) = ¢'(0) = 0, limy_,o £

M = 0, by Remark 3.2 there exists t; > 0
© (s)

such that
(3.3) ()t — Lv + a(z,t)f(v) >0 in QX (t1,00),
(3.4) 5_]1\)[ —b(z,t)g(v) >0 on 9N X (t1,00).

Then if u(z,0) < v(x,t1), by Comparison lemma 2.1, we deduce that
lim sup u(z,t) =0

1—00 2cq)
because lim¢—.oc v(z,t) = 0 uniformly in z € Q. O
Corollary 3.3. Suppose that Lu = >/, 4 %(alj(x)%) + c(z, t)u + d(z,t),

’

£(0) = ¢'(0) = 0, lims_ % € {0,8} where (8 is a positive constant. Sup-

pose also that for positive values of s, the function ; ,((ss)) is positive, increasing,
; ¢ ()f(s) _ ¢ (2)de _ :
limg_.q T = 0 and [, 7o = o Finally suppose that 0 < b(z,t) <

bo(), 0 < ao(x) < a(x, 1), c(x,t) <0, d(x,t) <0, =5 [ bo(x) ds+ [y ao(x) da

> 0, where ng) =0 if limg_,g ?8 = 0 and ng) = @ if limg_.g % = (3. Then

there exists a positive function v(z,t) continuous in Q x [0, co[ and tending to zero
ast — oo uniformly in x € Q such that, if u is a solution of the problem (1.1)—
(1.3), the inequality u(x,0) < v(x,to) (to > 0) implies that u(x,t) < v(z,t + to)
and

lim sup u(z,t) = 0.

1—00 zeQ)

PROOF: Let 9 be a positive solution of the following problem:

o (p

A= L1 =06 — ap(x), 8]\]_89

bo(z) + 6,
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where L1t =370 %(am(x)%) Taking

;—(f) X S Qo) ax
)\S 2(|Q|+|8Q|)[ €g /891)0( )d +L 0( )d]

and putting

__ 1 (f)/ / -
5_|Q|+|89|[ cg mbo(x)dSJr an(w)dw] A,

we see that the function 1 exists and § > 0. Take A = A+, B = §. Then all the

hypotheses of Theorem 3.1 are satisfied, which yields the result. (I
Corollary 3.4. Suppose that Lu = >/, 4 %(aij (x)%) + c(z, t)u + d(z,t),

0 < bz, t) < bo(x), 0 < aplx) < alx,t), e(x,t) <0, d(z,t) < 0. Suppose also

that o(u) = u™, f(u) =P, g(u) = uf, —st(zp) Joq bo(x) ds + [ ao(x) dz > 0 with

q2p>1,p2m>0Whereagp):0ifq>pand5((1p):1ifq:p. Then if u is

a solution of the problem (1.1)—(1.3), there exists a positive constant b such that
the solution u tends to zero as t — oo uniformly in x € Q for ue(x) < b.

4. Asymptotic behavior of solutions which tend to zero

In Section 3, we have shown that under some conditions, the solutions of the
problem (1.1)—(1.3) tend to zero as t — oo uniformly in x € Q. In this section,
we describe the asymptotic behavior of these solutions in the case where a(z,t) =
a(x), b(x,t) = b(x) and

9 )
Lu= 37 g (a5,
hy=1"" !

Consider the following boundary value problem:

(4.1) 8%&”) —Lu+a(@)f(u) =0 in Qx(0,00),
(4.2) % —b(z)g(u) =0 on 90 x (0,00),
(4.3) u(z,0) =uo(z) >0 in Q.

We are dealing with the asymptotic behavior as ¢t — oo of the solutions for the
problem (4.1)—(4.3).

Theorem 4.1. Suppose that f (0) = ¢ (0) = 0, lims_)o% € {0,8} where
f(s)

0 is a positive constant and for positive values of s, the function 70
V() _ ¢ ()dz _
=0 and |,

"
itive, increasing, limg_,q % 7o) = o Suppose also that

@' (s)

is pos-
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—ei!) [aqb(@) ds + [pa(@)de > 0, where =) = 0 if lim, o 43 = 0 and
(f = # if limg_,g fE = (. Then there exists a constant b > 0 such that,
1f u is a solution of the prob]em (4.1)—(4.3), we have
(i)
lim wu(x,t) =0
t—00

uniformly in x € Q for uo(z) < b.

(ii) Moreover, if there exists a positive constant c¢i such that

N ((:10)
50 T (H(s) H(5)

we also have
u(z,t) = a(t)(1+0(1)) as t— oo,

where H (s) is the inverse function of G(s) = fsl SD}ZZ)U and

¢ () (t) = —capf(alt), a(0) =1,

with cup = ‘Q| [ a(x)dz — Eg fé)ﬂ x) ds].

The proof of Theorem 4.1(i) is a direct consequence of Corollary 3.3, but that
of Theorem 4.1(ii) is based on the following lemmas:

Lemma 4.2. For any € > 0 small enough, there exist 7 > 0 and t; > 0 such that

u(@ t+7) < af(t + t1) + 1 (@) f (a1 (t + 1)),
where o (t) satisfies the following equation:

’ ’ 3

¢ (ai(®)(ef) (t) = —(cap —

and 1 (x) is a certain function.
PRrROOF: Put vi(xz,t) = af(t) + ¥1(x)f(aj(t)), where ¥ will be indicated later.
We have
(e(v1))e = Lur + a(@) f(v1) = ¢ (e1(t))(a]) (1)
+¢ (01(1)(01) (S (0T (1)¥r(2) + ¥1 ()
+02 (2) f (1 (8)  (@1(8)(af) (¢
—f(a5(1)) L1 (z) + a(x) f (1 (1)) + ()i

00 hwgton) = 28 105 1)) — b@g(0§ (1) — b (@) 705 (D)9 (),
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with {y1,91, 21} € [a](t), a7 (t) +¢1(x)f(af(t))]. Let ¥ be a positive solution of
the following problem:

_(Cab_i)—L’t/Jl :6—@(;5)7 1 _ (f)b

5 8—N—Eg ($)+5

1 exists if and only if

__ (f)/ / I -
0= |Q|—|—|8Q|[ g émb(x)ds—F Qa(x)d:c] |Q|+|8Q|(Cab 2).

If e =0 then 6 = 0. Put

_ ! (f) 12
o(r) = m[—sg /E)Q b(x) ds —I—/Qa(:zr) dx] — m(%b —r).

We have § (0) > 0. Then for any e > 0 small enough, it follows that 6(5) > 0.
Consequently, we obtain

(p(v1))e = Lur + a(@) f(v1) = 6f(e1(t))

e ’

~(ca = 5) (@SOS (OTO)L@) = (cap — 51 @)f (T E)]e (1)
¢ (21)

~(ea - PRI @GO T )]+ aa(alf 05 (O ),

vy

a7 ~b(@)g(1) = (34247 b(@)) F (01 (1) ~b(@)g(oF (1)) ~b(a)1 (2) F (o5 ()9 (52).

f(z1)

1"

Since f/(O) = gl(O) =0, limg_,g 2 ;fgf)(s) = 0, by Remark 3.2 there exists t; > 0
such that

(p(v1))t — Lvy + a(x)f(v1) >0 in QX (t1,00),

vy
N b(xz)g(vy) >0 on 9N X (t1,00).

Since lim;—,o0 u(x,t) = 0 uniformly in x € Q, then there exists 7 > 0 such that
u(z, ) < wvi(z,t1) in Q.
By Comparison lemma 2.1, it follows that
w(z,t+7) <wvilz,t+61) =it +61) +Y1(x) f(f(E + 1)),

which yields the result. O
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Lemma 4.3. For any € > 0 small enough, there exists tg > 0 such that:
u(@,t+7) = a3(t + tg) + Pa(a) f(a3(t + t2)),

where o5(t) satisfies the following equation:

! !

@ (a3(t)(a3) (1) = —(cap + %)f(ai(t)% a5(0) = 1,

and () is a certain function.

PROOF: Put va(z,t) = a5(t) + ¢2(x)f(a5(t)), where 1o will be indicated later.
We have

+o (a5()(05) (1) f (a5 (t))a(x) + Ya(x) f(a5 ()¢ (22)(a5) (1)
+y3(2) f(a5 (1) f (a5(6)(@5) (t)¢ (22)
— (a5 (1) L2 (@) + a(z) f (a5 (1)) + a(z)y2 () f (a5 (1) f (y2),
0% badaen) = 228 (a5(0)) — b(@)a(05 (1) ~ e (x) (05 (D) (),

with {y2, 92, 22} € [a5(t), a5(t) +a(x) f(a5(t))]. Let ¥2 be a positive solution of
the following problem:

_(Cab + E) — Lo = — a,(x)7 o _ E(f)b

5 an <o @) +a

1o exists if and only if

-t (f)/ / __ 19 €

Put

r —71 —g(f) x)ds alx x_7|9| C r
nr) = el [ v@s+ [ o) ds] - gt +1)

5) = 6(—%) and §'(0) > 0, then for any £ > 0 small enough, it follows
) herefore, we obtain

N
e
—

(p(v2))e = Lvg + a(@) f(v2) < pf(a3(t))

eap + ) F@B0)F (@501 (@) + (cas + Do) F(5(0)] (22)| L2
2 2 ¢ (22)
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/

+(car + 3)V3@)f(a5(1) f (05(1))

!

22 10" (22)] + al@)a (@) F(a5(8)  (v2),

02 b(w)gla) < (+eb b)) S (05 (1)) ~b(r)g(aF (1)) ~blr)a(w) (05 (1))g ().

Since £'(0) = g'(0) = 0, lims_.g %zf)(s') = 0, by Remark 3.2 there exists £, > 0
such that

(p(v2))t — Lvg + a(z)f(v2) <0 in QX (t«,00),

Ovo
N b(xz)g(va) <0 on  IN X (tx,00).

Since lim;—,o0 v2(z,t) = 0 uniformly in = € Q, there exists t3 > t, such that
u(z, ) > va(z, ta) in Q.
By Comparison lemma 2.1, we deduce that
u(@,t+7) > va(x,t +t2) = o3t +t2) + Y2 (@) f (a5 (t + t2)),
which gives the result. (|
PROOF OF THEOREM 4.1(ii): For any v > 0, we have

. aly+t)

In fact, since «(t) is decreasing and convex, it follows that
fla(?))
¢ (o))

fla(t))
¢ (a(t))a(t)

the other hand, if € > 0 is small enough, we obtain

a(t) = vea < a(t+7) < alt).

alyft) _ 1. On

Moreover, since lim;—, o = 0, we deduce that lim;— ()

c1e as(t) as(t)

4.5 1-— < liminf <l <1.
(4:5) ey = I T Gy Slmswp Ty <
In fact
_ g4 f(H(capt))
Lo 050 _ Hlcat+ 350 HCabt) =30 G, )
T oat) Hcapt) — H(capt) '
Since limg_, o0 % < c¢1, we obtain the result. We also have
4.6 1 < timinf 1 < g gup 210 <4 208
p

t—oo «(t) oo a(t) Cab
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In fact
<(t <(t 1 2
1§1iminfa1() §1imsupa1() < oE <1+ clg.
t—o0 O[( ) t—00 Oé(t) 1 — m Cab

Then from (4.4)—(4.6), Lemmas 4.2 and 4.3, we deduce that for any ¢ > 0 small

enough
u(z,t) . u(z,t)
< limsup
a(t) 7 oo o)

where k1 and ko are two positive constants. Consequently,

1 — kie < liminf <1+ koe
t—oo

u(z,t) = a(t)(l+o0(1)) as t— oo,
which gives the result. O

Remark 4.4. Let p(u ):um,f( )—up glu)=ul withp>m>0,¢g>p>1.

Suppose also that [, a(z)dx — Eq faﬁ x)ds > 0 where sé P 0 if g > p and
(P)
€q

solution of the problem (4.1)—(4.3), u tends to zero as t — oo uniformly in z €
for uo(x) < b. Moreover,

= 1 if ¢ = p. Then there exists a positive constant b such that, if u is a

1

Jlim. t“_(”i) - <pm_|ﬂ"|”‘ [ /Q a(z) dz — eV /8 @) ds]> "

p—m

5. Asymptotic behavior near the blow-up time

In this section, we give another condition under which the solutions of the
problem (1.1)—(1.3) blow up in a finite time in the case where

- %u - Oou
Lu = Z aij(x)m + Zaz(:zr)a—xZ .
ig=1 i=1

We also give the asymptotic behavior near the blow-up time of these solutions.

Theorem 5.1. Suppose that ai(z,t) < 0, bg(x,t) > 0. Suppose also that there
exists a function F(s) such that foo ds y < oo and for positive values of s, F(s)

is positive, increasing, convex samsfylng
—f/(s)F(s) + F/(s)f(s) >0 for s>0,
—F/(s)g(s) + F(s)g/(s) >0 for s>0.

Finally, suppose that Luo(x) + a(z,0)f(uo(x)) > 0 and for positive values of s,
©(s) is concave. Then any solution u of the problem (1.1)—(1.3) blows up in a
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finite time T and there exists a positive constant § such that the following estimate
holds

sup u(z, t) < H(T — 1)),

e
where H(s) is the inverse function of G(s) = [° Fd(‘;
PROOF: Let (0,7) be the maximum time interval in which the solution u of the
problem (1.1)—(1.3) exists. Our aim is to show that T is finite and the above
estimate holds. Since uo(z) > 0 in 2, from the maximum principle, we have
u(z,t) > 0in Qx(0,7T). Let w = ug. Since w(x,0) = Lueo(z)—a(x,0)f(uo(x)) > 0,
at(z,t) <0, by(x,t) > 0, we obtain

(5.1) (¢ (Ww)t — Lw > —a(z,t)f (Ww in  Qx (0,T),
(5.2) g—N > b(x,t)g ( Jw on 90 x (0,7T),

(5.3) w(z,0) >0 in Q.

From the maximum principle, there exists a constant ¢ > 0 such that
(5.4) ug(xz,t) > ¢ in QX (g,T)

for €, > 0. Consider the following function:

(5.5) J(x,t) = up — 6F (u),

where § > 0 small enough will be indicated later. We have
(¢ (u) )t = LJ
= ((p(u)t = Lu)r — OF (u)((p(u))t — Lu)

n

+5F" (u) Z i (T)ug; ug; — (530”(u)F(u)ut
ij=1
GO e t)f ()T — an(a 1) f ) + S, t)[F (u) f(u) — F(u)f ()]
+(5Fﬁ(u) Z i (T) g, Ug; — &pﬁ(u)F(u)ut,
ij=1
= bl )gla0) + b, 1)g ()] + S, ) () F () — F (w)gu).

Since ax < 0, by > 0, u¢ > 0 and for positive values of u, F"(u), —Lp"(u),

—f (W) F(u)+ F' (u) f(u) and ¢’ (u)F(u) — F' (u)g(u) are nonnegative by hypothe-
ses, we obtain

(5.7) (¢ (W) — LJ +a(z, t)f (w)J >0 in Qx(0,T),

(5.8) % > b, 0)g (W) on 99 x (0,T).
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From (5.4) and (5.5), take ¢ so small that
(5.9) J(x,60) >0 in Q.

Therefore, from the maximum principle, we deduce that

(5.10) ug > 0F(u) in Qx(g,T),
that is

ug
(5.11) —(G(u)) = Fla) > 4

Integrating (5.11) over (g4,7") we have
(5.12) G(u(z,e0)) > G(u(z,g0)) — Gu(z, T)) = 6(T — o).

Therefore T is finite and u blows up in a finite time. Integrating again (5.11) over
(t,T), we see that

(5.13) G(u(z,t)) > Gu(x,t)) — G(u(x,T)) > 6(T —t).
Since the inverse function H of G is decreasing, from (5.13) we obtain
u(z,t) < H[§(T —t)],

which yields the result. (I

Corollary 5.2. Suppose that a; < 0, by > 0, o(u) = u™, f(u) = uP, g(u) = uf,
Luo — a(x,0)ub > 0 where ¢ > 1 > m >0, ¢ > p > 0. Then any solution u of
the problem (1.1)—(1.3) blows up in a finite time T and there exists a positive
constant co such that
C2
sup u(z,t) < ——————.
z€Q (T —t)a—m

Remark 5.3. The argument in the proof of Theorem 5.1 is a classical one. It was
introduced in [4] and later used and modified by many authors. Unfortunately,
this method does not yield optimal results if blow-up occurs on the boundary.
More precisely, it is known that Corollary 5.2 is not sharp if m = 1. In this case,
the blow-up rate is

(T - t)_z(qlil) )
see [6].
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6. Blow-up set

In this section, we describe the blow-up set of some blow-up solutions for the
problem (1.1)—(1.3). More precisely, we show that under some conditions, certain
solutions of the problem (1.1)—(1.3) blow up in a finite time and their blow-up set
is on the boundary 052 of the domain €.

Theorem 6.1. Suppose that the hypotheses of Theorem 5.1 are satisfied. Sup-
pose also that there are positive constants Cy, ¢, such that

gol(s)zco for s>0 and sF'(H(s))ﬁCO for s>0.

Then any solution u of the problem (1.1)—(1.3) blows up in a finite time T and
Ep C 090, where Eg is the blow-up set of the solution u.

Remark 6.2. If F(s) = s7 with ¢ > 1, then we may take C, = Z7.

PRrOOF: By Theorem 5.1, we know that u blows up in a finite time 7. Thus
our aim in this proof is to show that Ep C 09Q. Let d(z) = dist (z,0Q) and
v(z) = d?(x) for x € N-(99Q) where

N(09) ={x €Q suchthat d(z) <e}.

Since 99 is of class C2, then the function v(x) € C?(N:(09)) if ¢ is sufficiently
small. On 0f), we have

Lv— & i (T) Vg,V
v ij=1
n n
- Z (2)da,; da; + 2d Z dya; + 2dZa2 2)dz;, —4Co Y aij(x)da,; da
Jj=1 1,j=1 =1 2,7=1
n
>2X\ =2 aji(z)| 2dZ|a, )| = 4CoAo — 4Xo

> 2\ —2Ct — 2d Co —4C Mo — 49

where d = SUD, <5y ety |l — y||. Therefore, there exists a positive constant Cp
such that

n
(6.1) Lv— % Z aij(2)vg;vg; > —C1 on O
ij=1

Since v € C?(N.(99)) for ¢ sufficiently small, let ¢, be so small that

n
Z aij(T)vz;vg; > —2C1  in Ng,(09).
ij=1

Co
(6.2) Lv—=*
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We extend v to a function of class C?(Q2) such that v > C* > 0 in Q — N, (0Q).
Therefore, we deduce that

Co \ . T
(6.3) Lv— — aij(T)vg;vg; > —C" in Q

Vo=
for some C* > 0. Multiplying (6.3) by € small enough, we may assume without loss
of generality that C* < 1. Put w«(x,t) = C1H(7) where 7 = 6(v(z) + %(T —1))
and C1 > 1 is a constant which will be indicated later. We get

7 n

i (T) Aii\T)Ug, Uy

Since H(s) is the inverse function of G(s), we have H (s) = —F(H(s)) and

H'(s) = —H'(s)F (H(s)). Consequently,

(6.4)  (p(wy)) — Lwy > —6C1H (7)[C* + Lv + 6

(6.5) (p(ws)) — Lws > 6CLF(H(s))[C* + Lv — 0F (H()) Y a3(x)va, vz
i,j=1

Since sF' (H(s)) < C, for s > 0, using the fact that F' (H(s)) is a decreasing
function (F/ is increasing and H is decreasing), we have

. Co
(6.6) (p(ws))t — Lwy > 6CLF(H(7))[C* 4+ Lv — 7" > aij(@)vrvz;).
ij=1
Therefore from (6.3), we deduce that
(6.7) (p(ws))t — Lws + az,t) f(ws) >0 in QX (g,T).

On 99, we have wy(z,t) = C1H(6C*(T —t)) > H(6(T —t)) because C7 > 1 and
C* < 1. Then by Theorem 5.1, we obtain

(6.8) ws(z,t) > u(z,t) on 0N X (g0, T).
Choose (' large enough that
(6.9) wy(z,60) = C1H(6(v(x) + C* (T — &p))) > u(z, o).

Consequently, from the maximum principle we deduce that
u(z,t) < wi(z,t) in  Qx(g0,T).
Then if Q' CC Q we have
u(z,t) < C1H(0(v(z) + C*(T —t))) < CrH(6v(x)).
It follows that

sup u(z,t) < sup C1H(dv(z)) < o0,
zeQ t€leo,T) zeQ

which yields the result. (I
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Corollary 6.2. Suppose that a; < 0, by > 0, p(u) = au + bu™, f(u) = uP,
g(u) = ul, Luy — a(x,0)ub > 0 wherea >0,b>0,¢>1>m >0,q¢>p>0.
Then any solution u of the problem (1.1)—(1.3) blows up in a finite time and
Ep C 092 where Epg is the blow-up set of the solution u.

(1]

(2]

(3]

[7]
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