On a problem of Nogura about the product of Fréchet-Urysohn $\langle \alpha_4 \rangle$ -spaces

CAMILLO COSTANTINI

Abstract. Assuming Martin's Axiom, we provide an example of two Fréchet-Urysohn $\langle \alpha_4 \rangle$ -spaces, whose product is a non-Fréchet-Urysohn $\langle \alpha_4 \rangle$ -space. This gives a consistent negative answer to a question raised by T. Nogura.

Keywords: Fréchet-Urysohn space, $\langle \alpha_4 \rangle$ -space, Martin's Axiom, almost disjoint functions, double iterated power

Classification: Primary 54D55; Secondary 54G15, 54B10, 54D80, 03E50

0. Introduction

The classes of $\langle \alpha_i \rangle$ -spaces, with $1 \leq i \leq 4$, were introduced by Arhangel'skii in [Ar1], to study the product of Fréchet-Urysohn spaces (Arhangel'skii also introduced the class of $\langle \alpha_5 \rangle$ -spaces, which turned out to coincide with that of $\langle \alpha_2 \rangle$ -spaces: see [No, Theorem 2.1]). Each $\langle \alpha_i \rangle$ -space is also an $\langle \alpha_{i+1} \rangle$ -space for $1 \leq i \leq 3$, and each first countable space is an $\langle \alpha_1 \rangle$ -space.

The above mentioned paper gave rise, in the following twenty years, to a wide literature, where several problems concerning this kind of spaces are investigated (see, for example, [Do] and related bibliography); often, in these articles, the Fréchet-Urysohn $\langle \alpha_i \rangle$ -spaces are briefly called $\langle \alpha_i$ -FU \rangle -spaces. For i = 1, 2, 3, Nogura [No] proved that the product of two $\langle \alpha_i \rangle$ -spaces is still an $\langle \alpha_i \rangle$ -space. Also, the product of an $\langle \alpha_3$ -FU \rangle -space and of a countably compact, regular Fréchet space (which is always an $\langle \alpha_4 \rangle$ -space, see [OI]) is a Fréchet space [Ar2]; this is one of the best results about preservation of the Fréchet property under products. Recall that, without additional assumptions, even the product of two compact (T₂) Fréchet spaces may fail to be Fréchet; the first, celebrated example in ZFC of this fact is due to Simon [Si1].

As for $\langle \alpha_4 \rangle$ -spaces and $\langle \alpha_4$ -FU \rangle -spaces (which coincide with the *strongly Fréchet* spaces — see [Ar2] and the remarks after Theorem 1.4 of [No]), their product is not very well behaved. The product of two $\langle \alpha_4$ -FU \rangle -spaces may fail both to be Fréchet and to be an $\langle \alpha_4 \rangle$ -space (cf. [No, Example 1.2 and Theorem 3.10]). Thus, Nogura put the following questions [No, Problem 3.15 and 3.18]:

- (a) Let X and Y be $\langle \alpha_4$ -FU \rangle -spaces. If $X \times Y$ is Fréchet, then is it an $\langle \alpha_4 \rangle$ -space?
- (b) Let X and Y be $\langle \alpha_4$ -FU \rangle -spaces. If $X \times Y$ is an $\langle \alpha_4 \rangle$ -space, then is it Fréchet?

Very recently, the first question was solved in the negative by Simon, under the Continuum Hypothesis ([Si2]). In this paper, we give under Martin's Axiom (MA) a negative answer to the second question — actually, our X and Y will turn out to be countable (paracompact) T_2 spaces, where each point, except one, is isolated. We point out that, after this paper had been written, a ZFC example for the same problem was found by Simon and the author (see [CS]).

1. Notations and basic facts

Throughout the paper, the left exponentiation ${}^{A}B$ among sets will denote the set of all functions $f: A \to B$, while the right exponentiation ξ^{κ} among cardinals will denote the cardinal number: $|{}^{\kappa}\xi|$. The ordered pairs, triples, and so on are denoted, respectively, by $\langle a, b \rangle$, $\langle a, b, c \rangle$, etc. For every function f, we denote by dom f its domain and by Im f its image $\{f(x) \mid x \in \text{dom } f\}$.

We say that a topological space X has the property $\langle \alpha_4 \rangle$ at a point \bar{x} if for every family $\{\psi_m \mid m \in \omega\}$ of functions from ω to X such that $\lim_{n \to +\infty} \psi_m(n) = \bar{x}$, there exists a $\psi \in {}^{\omega}X$ such that $\lim_{m \to +\infty} \psi(m) = \bar{x}$ and $|\{m \in \omega \mid \text{Im } \psi \cap$ $\text{Im } \psi_m \neq \emptyset\}| = \omega$. We say that X is an $\langle \alpha_4 \rangle$ -space if it has the property $\langle \alpha_4 \rangle$ at each of its points.

 Φ is the set of all one-to-one functions from ω to ω (throughout the paper, one-to-one does not ever involve onto, unless explicitly stated). To every $\Phi \subseteq \tilde{\Phi}$ a topological space X_{Φ} is associated, where $X_{\Phi} = \omega \cup \{\infty_{\Phi}\}, \infty_{\Phi} \notin \omega$, the points of ω are isolated and the point ∞_{Φ} has a local base given by $\{W_{\zeta} \mid \zeta \in \Phi_{\omega}\}$, with

$$W_{\zeta} = \{\infty_{\Phi}\} \cup \{\varphi(n) \mid \varphi \in \Phi \land n \ge \zeta(\varphi)\}$$

for every $\zeta \in {}^{\Phi}\omega$. In particular, it is clear that for every $\varphi \in \Phi$ (and for every subsequence of it) we have that $\lim_{n \to +\infty} \varphi(n) = \infty_{\Phi}$.

Observe that for every $\Phi \subseteq \overline{\Phi}$, X_{Φ} is a T₂ paracompact Fréchet space. To prove the latter property, let A be any subset of ω such that $\infty_{\Phi} \in \overline{A}$. Then for at least one $\widetilde{\varphi} \in \Phi$ we have that $|\operatorname{Im} \widetilde{\varphi} \cap A| = \omega$ (if, by contradiction, $\forall \varphi \in \Phi: \exists \zeta(\varphi) \in \omega: \forall n \geq \zeta(\varphi): \varphi(n) \notin A$, then W_{ζ} would be a nbhd of ∞_{Φ} in X_{Φ} which does not meet A). Then there is a subsequence φ^* of φ whose image is entirely contained in A, and we have $\lim_{n \to +\infty} \varphi^*(n) = \infty_{\Phi}$.

Remark 1. It is easy to prove, using an analogous argument, that whenever $\varphi' \in {}^{\omega}\omega$ is such that $\lim_{n\to+\infty} \varphi'(n) = \infty_{\Phi}$ in X_{Φ} , there exists $\varphi \in \tilde{\Phi}$ such that $|\operatorname{Im} \varphi' \cap \operatorname{Im} \varphi| = \omega$. We will often use this fact in the sequel.

We say that two elements φ', φ'' of $\tilde{\Phi}$ are almost disjoint (briefly, φ' a.d. φ'') if Im φ' and Im φ'' are almost disjoint (i.e., if $|\operatorname{Im} \varphi' \cap \operatorname{Im} \varphi''| < \omega$). We say that a subcollection Φ of $\tilde{\Phi}$ is almost disjoint if φ a.d. φ' for distinct $\varphi, \varphi' \in \Phi$. Clearly, φ' a.d. φ'' if and only if $\exists n \in \omega : \{\varphi'(n') \mid n' \ge n\} \cap \operatorname{Im} \varphi'' = \emptyset$.

We denote by Θ the set ${}^{\omega}\tilde{\Phi}$. For $\vartheta, \theta \in \Theta$ we will often abuse notation and write $\vartheta \circ \theta$ to denote the element of Θ defined by

$$(\vartheta \circ \theta)(m) = (\vartheta(m)) \circ (\theta(m))$$

for every $m \in \omega$. Of course, $|\Theta| = 2^{\omega}$; in all the paper, we suppose to have fixed a one-to-one indexing

 $\left\{\theta_{\beta} \,|\, \beta \in 2^{\omega}\right\}$

of Θ , and a one-to-one indexing

$$\{\hat{j}_{\alpha} \mid \alpha \in 2^{\omega} \setminus \omega\}$$

of $\omega \omega$.

2. Auxiliary results

Lemma 2 (MA). Let $\Phi^* \subseteq \tilde{\Phi}$ be an almost disjoint collection, with $|\Phi^*| = \kappa < 2^{\omega}$. Suppose to have $\vartheta^0, \vartheta^1 \in \Theta$ such that it is possible to associate to every $\langle \iota, m \rangle \in 2 \times \omega$ a $\varphi_m^{\iota} \in \Phi^*$ in such a way that $\langle \iota, m \rangle \mapsto \varphi_m^{\iota}$ is one-to-one and

 $\forall \iota \in 2 : \forall m \in \omega : \operatorname{Im} \left(\vartheta^{\iota}(m) \right) \subseteq \operatorname{Im} \varphi^{\iota}_{m}.$

Then there exists $j \in {}^{\omega}\omega$ such that, defining $\varphi^{\iota} \in {}^{\omega}\omega$ for $\iota \in 2$ by

(1)
$$\varphi^{\iota}(m) = \left(\vartheta^{\iota}(m)\right) (j(m)),$$

we have:

- (a) $\varphi^{\iota} \in \tilde{\Phi}$ for $\iota = 0, 1$, and Im $\varphi^0 \cap \text{Im } \varphi^1 = \emptyset$;
- (b) φ^{ι} a.d. φ for every $\iota \in 2$ and $\varphi \in \Phi^*$.

PROOF: Since $\varphi_{m'}^{\iota'}$ a.d. $\varphi_{m''}^{\iota''}$ for $\langle \iota', m' \rangle \neq \langle \iota'', m'' \rangle$, for every $m \in \omega$ there exists $j^*(m)$ such that $\{\varphi_m^{\iota}(n) \mid n \geq j^*(m)\} \cap \operatorname{Im} \varphi_{m'}^{\iota'} = \emptyset$ for every $m' \leq m$ and $\langle \iota', m' \rangle \neq \langle \iota, m \rangle$. For every $m \in \omega$, since $\forall \iota \in 2$: $(\vartheta^{\iota}(m) \in \tilde{\Phi} \land \operatorname{Im} (\vartheta^{\iota}(m)) \subseteq \operatorname{Im} \varphi_m^{\iota})$, there exists $j^*(m) \in \omega$ such that $\forall \iota \in 2$: $\forall n \geq j^*(m)$: $(\vartheta^{\iota}(m))(n) \in \{\varphi_m^{\iota}(n') \mid n' \geq j^*(m)\}$. Putting $j^{\sharp} = \sup\{j^*, j^*\}$, for every $\langle \iota', m' \rangle, \langle \iota'', m'' \rangle \in 2 \times \omega$ with $\langle \iota', m' \rangle \neq \langle \iota'', m'' \rangle$ we will have at the same time:

(2)
$$\left\{ \left(\vartheta^{\iota'}(m')\right)(n) \middle| n \ge j^{\sharp}(m') \right\} \cap \left\{ \left(\vartheta^{\iota''}(m'')\right)(n) \middle| n \ge j^{\sharp}(m'') \right\} = \emptyset$$

and

(3)
$$\left\{ \left(\vartheta^{\iota'}(m') \right)(n) \, \middle| \, n \ge j^{\sharp}(m') \right\} \cap \left\{ \varphi_{m''}^{\iota''}(n) \, \middle| \, n \ge j^{\sharp}(m'') \right\} = \emptyset.$$

We proceed now to a routine application of MA. Put $\Phi^{\sharp} = \Phi^* \setminus \{\varphi_m^{\iota} \mid \langle \iota, m \rangle \in 2 \times \omega\}$ and define a poset $\langle \mathbf{P}, \leq \rangle$ in the following way:

$$\mathbf{P} = \left\{ \langle g, \mathcal{A} \rangle \, \Big| \, \mathcal{A} \in \left[\Phi^{\sharp} \right]^{<\omega} \, \land \, g \in {}^{<\omega}\omega \, \land \, \forall m \in \text{dom } g : g(m) \ge j^{\sharp}(m) \right\};$$

for $\langle g', \mathcal{A}' \rangle, \langle g'', \mathcal{A}'' \rangle \in \mathbf{P}$, let $\langle g', \mathcal{A}' \rangle \geq \langle g'', \mathcal{A}'' \rangle$ if $g' \subseteq g'', \mathcal{A}' \subseteq \mathcal{A}''$ and $\forall \iota \in 2 : \forall m \in \operatorname{dom} g'' \setminus \operatorname{dom} g' : \forall \varphi \in \mathcal{A}' : (\vartheta^{\iota}(m)) (g''(m)) \notin \operatorname{Im} \varphi$.

Observe that for every $g \in {}^{<\omega}\omega$ and $\mathcal{A}', \mathcal{A}'' \in [\Phi^{\sharp}]^{<\omega}, \langle g, \mathcal{A}' \cup \mathcal{A}'' \rangle$ is clearly a common extension of $\langle g, \mathcal{A}' \rangle$ and $\langle g, \mathcal{A}'' \rangle$: thus, if $\langle g', \mathcal{A}' \rangle$ and $\langle g'', \mathcal{A}'' \rangle$ are incompatible, then $g' \neq g''$; since $|{}^{<\omega}\omega| = \omega$, we have that $\langle \mathbf{P}, \leq \rangle$ is c.c.c.

For every $\varphi \in \Phi^{\sharp}$ and $m \in \omega$, the set $D_{\varphi,m} = \{\langle g, \mathcal{A} \rangle \in \mathbf{P} \mid \varphi \in \mathcal{A} \land m \in \text{dom } g\}$ is dense in **P**. Indeed, let $\langle g, \mathcal{A} \rangle$ be any element of **P**: if $m \in \text{dom } g$, then $\langle g, \mathcal{A} \cup \{\varphi\} \rangle$ is an extension of $\langle g, \mathcal{A} \rangle$ which belongs to $D_{\varphi,m}$. If $m \notin \text{dom } g$, then consider that since $\vartheta^{\iota}(m)$ a.d. φ' for every $\iota \in 2$ and $\varphi' \in \mathcal{A}$, there exist $n^0, n^1 \in \omega$ such that $\forall \iota \in 2: \forall \varphi' \in \mathcal{A}: \{(\vartheta^{\iota}(m))(n) \mid n \geq n^{\iota}\} \cap \text{Im } \varphi' = \emptyset$; define an extension \tilde{g} of g with dom $\tilde{g} = \text{dom } g \cup \{m\}$ and $\tilde{g}(m) = \max\{j^{\sharp}(m), n^0, n^1\}$: then $\langle \tilde{g}, \mathcal{A} \cup \{\varphi\} \rangle \in D_{\varphi,m}$ and $\langle g, \mathcal{A} \rangle \geq \langle \tilde{g}, \mathcal{A} \cup \{\varphi\} \rangle$.

Since $|\{D_{\varphi,m} \mid \varphi \in \Phi^{\sharp} \land m \in \omega\}| \leq \kappa \cdot \omega = \kappa$, there exists a filter G on \mathbf{P} such that $\forall \varphi \in \Phi^{\sharp} \colon \forall m \in \omega \colon G \cap D_{\varphi,m} \neq \emptyset$. Let $j = \bigcup \{g \in {}^{<\omega}\omega \mid \exists \mathcal{A} \in [\Phi^{\sharp}]^{<\omega} \colon \langle g, \mathcal{A} \rangle \in G\}$: it is easy to see that j is a function and that $j \colon \omega \to \omega$ (of course, we may always suppose that $\Phi^{\sharp} \neq \emptyset$). We must prove that the functions φ^{ι} for $\iota = 0, 1$, defined by (1), satisfy (a) and (b).

First of all, observe that $j \geq j^{\sharp}$. Indeed, let $m \in \omega$: then $\langle m, j(m) \rangle \in j$, i.e., there exists $\langle g, \mathcal{A} \rangle \in G$ such that $\langle m, j(m) \rangle \in g$; thus g(m) = j(m), and by the definition of \mathbf{P} we have that $j(m) = g(m) \geq j^{\sharp}(m)$. Now, if $m', m'' \in \omega$ with $m' \neq m''$, then $\varphi^{\iota}(m') = (\vartheta^{\iota}(m'))(j(m')) \in \{(\vartheta^{\iota}(m'))(n) \mid n \geq j^{\sharp}(m')\}$ and $\varphi^{\iota}(m'') = (\vartheta^{\iota}(m''))(j(m'')) \in \{(\vartheta^{\iota}(m''))(n) \mid n \geq j^{\sharp}(m'')\}$ for $\iota \in 2$, so that $\varphi^{\iota}(m') \neq \varphi^{\iota}(m'')$ by (2), and hence φ^{0}, φ^{1} are one-to-one. Moreover, for every $m', m'' \in \omega$ (even, possibly, m' = m''), we have that $\varphi^{0}(m') \in \{(\vartheta^{0}(m'))(n) \mid n \geq j^{\sharp}(m'')\}$ and $\varphi^{1}(m'') \in \{(\vartheta^{1}(m''))(n) \mid n \geq j^{\sharp}(m'')\}$, so that $\varphi^{0}(m') \neq \varphi^{1}(m'')$ again by (2), and hence Im $\varphi^{0} \cap \text{Im } \varphi^{1} = \emptyset$.

To prove (b), let φ^* be any element of Φ^* , and consider first the case where $\varphi^* \in \Phi^{\sharp}$. Given $\iota \in 2$, suppose by contradiction that $\operatorname{Im} \varphi^* \cap \operatorname{Im} \varphi^{\iota}$ is infinite. Fix any $\overline{m} \in \omega$ and take $\langle g, \mathcal{A} \rangle \in G \cap D_{\varphi^*, \overline{m}}$, so that $\varphi^* \in \mathcal{A}$. Since $\operatorname{Im} \varphi^* \cap \operatorname{Im} \varphi^{\iota}$ is infinite, the set $M = (\varphi^{\iota})^{-1}$ ($\operatorname{Im} \varphi^* \cap \operatorname{Im} \varphi^{\iota}$) = $(\varphi^{\iota})^{-1}$ ($\operatorname{Im} \varphi^*$) is infinite, too: then fix $\hat{m} \in M \setminus \operatorname{dom} g$. Now take $\langle \hat{g}, \hat{\mathcal{A}} \rangle \in G$ such that $\hat{m} \in \operatorname{dom} \hat{g}$, and let $\langle g^{\sharp}, \mathcal{A}^{\sharp} \rangle \in G$ be a common extension of $\langle g, \mathcal{A} \rangle$ and $\langle \hat{g}, \hat{\mathcal{A}} \rangle$, so that, in particular, $\hat{m} \in \operatorname{dom} \hat{g} \subseteq \operatorname{dom} g^{\sharp}$ and $(\vartheta^{\iota}(\hat{m}))(g^{\sharp}(\hat{m})) = (\vartheta^{\iota}(\hat{m}))(j(\hat{m})) = \varphi^{\iota}(\hat{m}) \in \operatorname{Im} \varphi^*$ (by the definition of M). This is a contradiction, because $\hat{m} \notin \operatorname{dom} g$, $\varphi^* \in \mathcal{A}$ and $\langle g, \mathcal{A} \rangle \geq \langle g^{\sharp}, \mathcal{A}^{\sharp} \rangle$.

Consider now the case where $\varphi^* = \varphi_{m^*}^{\iota^*}$ for some $\langle \iota^*, m^* \rangle \in 2 \times \omega$. Given any $\iota \in 2$, from $j \geq j^{\sharp}$ we have that $\varphi^{\iota}(m) = (\vartheta^{\iota}(m))(j(m)) \in \{(\vartheta^{\iota}(m))(n) \mid n \geq j^{\sharp}(m)\}$, which implies by (3) that $\forall m \neq m^* : \varphi^{\iota}(m) \notin \{\varphi_{m^*}^{\iota^*}(n) \mid n \geq j^{\sharp}(m^*)\}$ $(m \neq m^*$ entails in any case $\langle \iota, m \rangle \neq \langle \iota^*, m^* \rangle$); therefore, Im $\varphi^{\iota} \cap$ Im $\varphi_{m^*}^{\iota^*} \subseteq \{\varphi^{\iota}(m^*)\} \cup \{\varphi_{m^*}^{\iota^*}(n) \mid n < j^{\sharp}(m^*)\}$, which is a finite set. The following lemma is, in some sense, a "one-dimension" formulation of the previous one; they will both be useful in the sequel.

Lemma 3 (MA). Let $\hat{\Phi} \subseteq \tilde{\Phi}$ be an almost disjoint collection, with $|\hat{\Phi}| = \kappa < 2^{\omega}$. Suppose that there exists a $\vartheta \in \Theta$ such that for every $m \in \omega$ there exists an $f_m \in \hat{\Phi}$ with $\operatorname{Im}(\vartheta(m)) \subseteq \operatorname{Im} f_m$; also, suppose that $m \mapsto f_m$ is one-to-one. Then there exists $\rho \in \tilde{\Phi}$ such that $\rho \operatorname{a.d.} \varphi$ for every $\varphi \in \hat{\Phi}$ and $\operatorname{Im} \rho \cap \operatorname{Im}(\vartheta(m)) \neq \emptyset$ for every $m \in \omega$.

The proof may be obtained following the outlines of the previous one; or, alternatively, applying Lemma 2 (after extending $\hat{\Phi}$ to a collection Φ^* by adding specular elements, which is possible by [Ku, Corollary 2.16]) and then taking as ρ a suitable φ^{ι} ; or, alternatively, applying [Ku, Theorem 2.15] to $\mathcal{C} = \{ \operatorname{Im} (\vartheta(m)) | m \in \omega \}$ and $\mathcal{A} = \{ \operatorname{Im} \varphi | \varphi \in \hat{\Phi} \} \setminus \{ \operatorname{Im} f_m | m \in \omega \}$, and then shrinking and indexing the set d.

Now we introduce a set-theoretic operator which will play a crucial role for our further constructions. Let ξ be any infinite cardinal number, and define by transfinite induction the sets M_{γ} , for $\gamma \in \xi^+$, in the following way. $M_0 = \xi$; if $M_{\gamma'}$ is defined for every $\gamma' < \gamma$, where $\gamma \in \xi^+ \setminus \{0\}$, then

$$M_{\gamma} = \left\{ \langle \mu^{0}, \mu^{1}, \beta^{0}, \beta^{1} \rangle \right|$$
$$\forall \iota \in 2: \left(\beta^{\iota} \in 2^{\xi} \text{ and } \mu^{\iota} \text{ is a one-to-one function from } \xi \text{ to } \bigcup_{\gamma' < \gamma} M_{\gamma'} \right) \right\}.$$

The set $\bigcup_{\gamma \in \xi^+} M_{\gamma}$ will be called the *double iterated power* of ξ , and denoted by DIP (ξ). For every $x \in$ DIP (ξ), we also define a subset supp (x) of DIP (ξ), the support of x, putting supp (x) = \emptyset if $x \in M_0 = \xi$, and supp (x) = Im $\mu^0 \cup$ Im μ^1 if $x \in \bigcup_{\gamma \in \xi^+ \setminus \{0\}} M_{\gamma}$ and $x = \langle \mu^0, \mu^1, \beta^0, \beta^1 \rangle$.

It is immediate to prove by transfinite induction that $|M_{\gamma}| = 2^{\xi}$ for every $\gamma \in \xi^+ \setminus \{0\}$; therefore, $|\text{DIP}(\xi)| = 2^{\xi}$. We will say that an indexing $\{x_{\alpha} \mid \alpha \in 2^{\xi}\}$ of DIP (ξ) is well founded if it is one-to-one, $x_{\alpha} = \alpha$ for every $\alpha \in \xi$, and $\forall \alpha \in 2^{\omega}$: supp $(x_{\alpha}) \subseteq \{x_{\alpha'} \mid \alpha' < \alpha\}$.

Lemma 4. For every infinite cardinal ξ there exists a well founded indexing of DIP (ξ).

PROOF: First, fix any one-to-one indexing $\{y_{\sigma} \mid \sigma \in 2^{\xi}\}$ of DIP (ξ) . Then define $j: 2^{\xi} \to 2^{\xi}$ in the following way:

 $\begin{array}{l} - - j\left(\alpha\right) = \alpha, \text{ for } \alpha \in \xi; \\ - - j\left(\alpha\right) = \min\left\{\sigma \in 2^{\xi} \setminus \left\{j\left(\alpha'\right) \mid \alpha' < \alpha\right\} \mid \text{supp } (y_{\sigma}) \subseteq \left\{y_{j\left(\alpha'\right)} \mid \alpha' < \alpha\right\}\right\}, \\ \text{ for } \alpha \geq \xi. \end{array}$

Observe that the above set cannot be empty. Indeed, for every $\beta \in 2^{\xi}$, we have $\langle \mathrm{id}_{\xi}, \mathrm{id}_{\xi}, \beta, 0 \rangle \in M_1 \subseteq \mathrm{DIP}(\xi)$, hence there exists $\sigma_{\beta} \in 2^{\xi}$ such that

C. Costantini

 $\langle \mathrm{id}_{\xi}, \mathrm{id}_{\xi}, \beta, 0 \rangle = y_{\sigma_{\beta}}$. Since $\beta \mapsto \sigma_{\beta}$ is one-to-one, there must exist $\hat{\beta} \in 2^{\xi}$ such that $\sigma_{\hat{\beta}} \notin \{j(\alpha') \mid \alpha' < \alpha\}$, and for such a $\sigma_{\hat{\beta}}$ we have that $\mathrm{supp}(y_{\sigma_{\hat{\beta}}}) = \mathrm{supp}(\langle \mathrm{id}_{\xi}, \mathrm{id}_{\xi}, \beta, 0 \rangle) = \xi \subseteq \{j(\alpha') \mid \alpha' < \alpha\}.$

Now put, for every $\alpha \in 2^{\xi}$, $x_{\alpha} = y_{j(\alpha)}$: by the definition of $j, \alpha \mapsto x_{\alpha}$ is one-to-one and supp $(x_{\alpha}) = \text{supp } (y_{j(\alpha)}) \subseteq \{y_{j(\alpha')} \mid \alpha' < \alpha\} = \{x_{\alpha'} \mid \alpha' < \alpha\}$ for every $\alpha \in 2^{\xi} \setminus \xi$. Thus, we only need to prove the onto character of $\alpha \mapsto x_{\alpha}$ over DIP (ξ) , which is clearly equivalent to the onto character of j over 2^{ξ} .

Suppose j is not onto and let $\hat{\gamma} = \min \{\gamma \in \xi^+ \mid M_\gamma \nsubseteq \{x_\alpha \mid \alpha \in 2^{\xi}\}\}$; fix $\hat{\sigma} \in 2^{\xi}$ such that $y_{\hat{\sigma}} \in M_{\hat{\gamma}} \setminus \{x_\alpha \mid \alpha \in 2^{\xi}\}$ and put $A = \text{supp}(y_{\hat{\sigma}})$. Then every $a \in A$ belongs to some M_γ with $\gamma < \hat{\gamma}$, hence there exists $\alpha(a) \in 2^{\xi}$ such that $x_{\alpha(a)} = a$; as $|A| \leq \xi$ and $\operatorname{cof} 2^{\xi} > \xi$, there exists $\hat{\alpha} \in 2^{\xi}$ such that $\hat{\alpha} > \alpha(a)$ for every $a \in A$. Then for every $\alpha \in 2^{\xi}$ with $\alpha \geq \hat{\alpha}$, since $\hat{\sigma} \in \{\sigma \in 2^{\xi} \setminus \{j(\alpha') \mid \alpha' < \alpha\} \mid \operatorname{supp}(y_{\sigma}) \subseteq \{y_{j(\alpha')} \mid \alpha' < \alpha\}\}$, we have that $j(\alpha) \leq \hat{\sigma}$; this is in contrast with the one-to-one character of j. \Box

3. The main construction

Henceforth, we assume MA. We will associate by transfinite induction to every $\alpha \in 2^{\omega}$, a pair $\langle \varphi_{\alpha}^{0}, \varphi_{\alpha}^{1} \rangle$ of elements of $\tilde{\Phi}$. We adopt the following notation: for every $x \in \text{DIP}(\omega)$, let $\alpha^{\sharp}(x)$ denote the unique $\alpha \in 2^{\omega}$ such that $x_{\alpha} = x$ (so that $\alpha^{\sharp}(x_{\alpha}) = \alpha$ for every $\alpha \in 2^{\omega}$).

Also, we denote by K the set of all strictly increasing functions $k: \omega \to \omega$ and by Λ the set of all functions $\lambda: \omega \to K$.

Let $\{F_{\iota,m}\}_{\langle \iota,m\rangle\in 2\times\omega}$ be a partition of ω — where $\langle \iota,m\rangle \mapsto F_{\iota,m}$ is one-to-one — such that $|F_{\iota,m}| = \omega$ for every $\langle \iota,m\rangle \in 2\times\omega$. For every $\langle \iota,m\rangle \in 2\times\omega$, let f_m^t be an element of $\tilde{\Phi}$ such that Im $f_m^t = F_{\iota,m}$. For every $\alpha \in \omega$ and $\iota \in 2$, we put $\varphi_{\alpha}^t = f_{\alpha}^t$.

Suppose now to have defined $\varphi_{\alpha'}^{\iota}$ for every $\iota \in 2$ and $\alpha' < \alpha$, where $\alpha \in 2^{\omega} \setminus \omega$, in such a way that $\varphi_{\alpha'}^{\iota'}$ a.d. $\varphi_{\alpha''}^{\iota''}$ for $\langle \iota', \alpha' \rangle \neq \langle \iota'', \alpha'' \rangle$. Let $x_{\alpha} = \langle \mu^{0}, \mu^{1}, \beta^{0}, \beta^{1} \rangle$ and define $\vartheta_{\alpha}^{0}, \vartheta_{\alpha}^{1} \in \Theta$ by $\vartheta_{\alpha}^{\iota}(m) = \varphi_{\alpha^{\sharp}(\mu^{\iota}(m))}^{\iota}$ for $\iota \in 2$. Consider the two elements $\vartheta_{\alpha}^{\iota} \circ \theta_{\beta^{\iota}}$ of Θ ($\iota = 0, 1$): since $\vartheta_{\alpha}^{\iota}(m)$ a.d. $\vartheta_{\alpha}^{\iota'}(m')$ for $\langle \iota, m \rangle \neq \langle \iota', m' \rangle$, we also have that $\vartheta_{\alpha}^{\iota}(m) \circ \theta_{\beta^{\iota}}(m)$ a.d. $\vartheta_{\alpha}^{\iota'}(m') \circ \theta_{\beta^{\iota}}(m')$ for $\langle \iota, m \rangle \neq \langle \iota', m' \rangle$. Let $\Phi^{*} =$ $\{\varphi_{\alpha'}^{\iota} \mid \iota \in 2 \land \alpha' < \alpha\}$: then Φ^{*} is an almost disjoint family and $|\Phi^{*}| = |\alpha| < 2^{\omega}$. Moreover,

 $\forall \langle \iota, m \rangle \in 2 \times \omega : \operatorname{Im} \left(\vartheta^{\iota}_{\alpha}(m) \circ \theta_{\beta^{\iota}}(m) \right) \subseteq \operatorname{Im} \left(\vartheta^{\iota}_{\alpha}(m) \right) = \operatorname{Im} \varphi^{\iota}_{\alpha^{\sharp}(\mu^{\iota}(m))};$

since $\langle \iota, m \rangle \mapsto \varphi^{\iota}_{\alpha^{\sharp}(\mu^{\iota}(m))}$ is one-to-one from $2 \times \omega$ to Φ^* , we may apply Lemma 2 to get a $j \in {}^{\omega}\omega$ such that the functions $\tilde{\varphi}^{0}_{\alpha}, \tilde{\varphi}^{1}_{\alpha}$, defined by

(4)
$$\tilde{\varphi}^{\iota}_{\alpha}(m) = \left(\vartheta^{\iota}_{\alpha}(m)\right) \left(\left(\theta_{\beta^{\iota}}(m)\right) \left(j(m)\right) \right) \quad \text{for } \iota \in 2,$$

are such that:

- 1) $\tilde{\varphi}^{\iota}_{\alpha} \in \tilde{\Phi} \text{ for } \iota \in 2 \text{ and } \tilde{\varphi}^{0} \text{ a.d. } \tilde{\varphi}^{1};$
- 2) $\tilde{\varphi}^{\iota}_{\alpha}$ a.d. $\varphi^{\iota'}_{\alpha'}$ for every $\iota, \iota' \in 2$ and $\alpha' < \alpha$.

Put $\varphi_{\alpha}^{0} = \tilde{\varphi}_{\alpha}^{0}$, so that φ_{α}^{0} a.d. $\varphi_{\alpha'}^{\iota}$ for every $\langle \iota, \alpha' \rangle \in 2 \times \alpha$. Also, define $\hat{\lambda}_{\alpha} \in \Lambda$ by:

(5)
$$(\hat{\lambda}_{\alpha}(m))(n) = n + \hat{j}_{\alpha}(m)$$

for every $m, n \in \omega$ — remember (\blacklozenge).

Now, consider the almost disjoint collection of functions: $\hat{\Phi} = \Phi^* \cup \{\varphi^0_{\alpha}\}$: putting

(6)
$$\hat{\vartheta}_{\alpha}(m) = f_m^0 \circ \left(\hat{\lambda}_{\alpha}(m)\right)$$

we get a function $\hat{\vartheta}_{\alpha} \in \Theta$ such that $\hat{\vartheta}_{\alpha}(m)$ a.d. $\hat{\vartheta}_{\alpha}(m')$ for $m \neq m'$ and Im $(\hat{\vartheta}_{\alpha}(m))$ \subseteq Im f_m^0 for every $m \in \omega$. Since $m \mapsto f_m^0$ is one-to-one (from ω to $\hat{\Phi}$), we have by Lemma 3 that there exists $\rho_{\alpha} \in \tilde{\Phi}$ such that ρ_{α} a.d. φ for every $\varphi \in \hat{\Phi}$ and that

(7)
$$\operatorname{Im} \rho_{\alpha} \cap \operatorname{Im} \left(\hat{\vartheta}_{\alpha}(m)\right) \neq \emptyset \text{ for every } m \in \omega.$$

Put $S_{\alpha} = \operatorname{Im} \tilde{\varphi}_{\alpha}^{1} \cup \operatorname{Im} \rho_{\alpha}$ and let φ_{α}^{1} be an element of $\tilde{\Phi}$ such that $\operatorname{Im} \varphi_{\alpha}^{1} = S_{\alpha}$. Since both ρ_{α} and $\tilde{\varphi}_{\alpha}^{1}$ are a.d. from every $\varphi \in \hat{\Phi}$, the same holds for φ_{α}^{1} . This completes the inductive definition.

Thus the family $\{\varphi_{\alpha}^{\iota} | \langle \iota, \alpha \rangle \in 2 \times 2^{\omega}\}$ is such that φ_{α}^{ι} a.d. $\varphi_{\alpha'}^{\iota'}$ for $\langle \iota, \alpha \rangle \neq \langle \iota', \alpha' \rangle \in 2 \times 2^{\omega}$. Moreover, by our construction we have that for every $\alpha \in 2^{\omega} \setminus \omega$ there exist $\tilde{\varphi}_{\alpha}^{0}, \tilde{\varphi}_{\alpha}^{1}, \rho_{\alpha} \in \tilde{\Phi}$ such that $\tilde{\varphi}_{\alpha}^{0} = \varphi_{\alpha}^{0}$, Im $\tilde{\varphi}_{\alpha}^{1} \subseteq \varphi_{\alpha}^{1}$, Im $\rho_{\alpha} \subseteq \varphi_{\alpha}^{1}$, and (4), (7) are fulfilled (with $\hat{\lambda}_{\alpha}$ and $\hat{\vartheta}_{\alpha}$ defined by (5) and (6)).

We put $\Phi^{\iota} = \{\varphi^{\iota}_{\alpha} \mid \alpha \in 2^{\omega}\}$ for $\iota = 0, 1$. We claim that X_{Φ^0} and X_{Φ^1} are the required spaces X and Y.

4. Proof of the main result

First, we want to prove that X_{Φ^0} , X_{Φ^1} and $X_{\Phi^0} \times X_{\Phi^1}$ are $\langle \alpha_4 \rangle$ -spaces. In accordance with [En], for $f, g: A \to X, Y$ we denote by $f \Delta g$ the function from A to $X \times Y$ defined by: $(f \Delta g)(a) = \langle f(a), g(a) \rangle$ for every $a \in A$.

Lemma 5. Let X^0, X^1 be two topological spaces, such that $X^{\iota} = D^{\iota} \cup \{\infty^{\iota}\}$ for $\iota \in 2$, where D^{ι} is discrete and $\infty^{\iota} \notin D^{\iota}$. Suppose that for every $\iota \in 2$ there is at least a $\rho^{\iota} \colon \omega \to D^{\iota}$ such that $\lim_{n \to +\infty} \rho^{\iota}(n) = \infty^{\iota}$. Also, suppose that whenever for every $\langle \iota, i \rangle \in 2 \times \omega, \ \hat{\psi}_i^{\iota}$ is a sequence in D^{ι} such that $\lim_{n \to +\infty} \hat{\psi}_i^{\iota}(n) = \infty^{\iota}$, then there exist $\hat{\psi}^{\iota} \colon \omega \to D^{\iota}$ for $\iota \in 2$ such that $\lim_{n \to +\infty} \hat{\psi}^{\iota}(i) = \infty^{\iota}$ and

$$\left|\left\{i\in\omega\left|\operatorname{Im}\left(\hat{\psi}^{0}\Delta\hat{\psi}^{1}\right)\cap\operatorname{Im}\left(\hat{\psi}^{0}_{i}\Delta\hat{\psi}^{1}_{i}\right)\neq\emptyset\right\}\right|=\omega.$$

Then X^0 , X^1 and $X^0 \times X^1$ are all $\langle \alpha_4 \rangle$ -spaces.

PROOF: We first prove that, for $\iota \in 2$, X^{ι} is an $\langle \alpha_4 \rangle$ -space. Let $\iota = 0$ (the proof for $\iota = 1$ is symmetric). Since the points of D^0 trivially have the property $\langle \alpha_4 \rangle$, suppose to have for every $i \in \omega$ a $\tilde{\psi}_i : \omega \to X^0$ such that $\lim_{n \to +\infty} \tilde{\psi}_i(n) = \infty^0$. If for infinitely many $i \in \omega$ the sequence $\tilde{\psi}_i$ takes on the value ∞^0 , then the $\tilde{\psi} : \omega \to X^0$ having constant value ∞^0 is such that $|\{i \in \omega \mid \operatorname{Im} \tilde{\psi}_i \cap \operatorname{Im} \tilde{\psi}\}| = \omega$. Thus, we may suppose $\tilde{\psi}_i : \omega \to D^0$ for every $i \in \omega$. Putting $\hat{\psi}_i^0 = \tilde{\psi}_i$ and $\hat{\psi}_i^1 = \rho^1$ for every $i \in \omega$, we get by hypothesis $\hat{\psi}^0, \hat{\psi}^1 : \omega \to D^0, D^1$ such that $\lim_{n \to +\infty} \hat{\psi}^{\iota}(n) = \infty^{\iota}$ for $\iota \in 2$ and $|\{i \in \omega \mid \operatorname{Im} (\hat{\psi}^0 \Delta \hat{\psi}^1) \cap \operatorname{Im} (\hat{\psi}_i^0 \Delta \hat{\psi}_i^1) \neq \emptyset\}| = \omega$; thus $\hat{\psi}^0$ is such that $\lim_{n \to +\infty} \hat{\psi}^0(n) = \infty^0$ and $|\{i \in \omega \mid \operatorname{Im} \hat{\psi}^0 \cap \operatorname{Im} \hat{\psi}_i^0 \neq \emptyset\}| = \omega$, i.e., $|\{i \in \omega \mid \operatorname{Im} \hat{\psi}^0 \cap \operatorname{Im} \tilde{\psi}_i \neq \emptyset\}| = \omega$.

Now we prove that $X^0 \times X^1$ is an $\langle \alpha_4 \rangle$ -space. Property $\langle \alpha_4 \rangle$ is trivial at the points of $D^0 \times D^1$, while at the points of $(D^0 \times \{\infty^1\}) \cup (\{\infty^0\} \times D^1)$ it easily comes from the $\langle \alpha_4 \rangle$ character of X^0 and X^1 . Then consider the point $\langle \infty^0, \infty^1 \rangle$ and suppose to have, for every $\langle \iota, i \rangle \in 2 \times \omega$, a $\tilde{\psi}_i^t \colon \omega \to X^t$ such that $\lim_{n \to +\infty} \tilde{\psi}_i^\iota(n) = \infty^\iota$. Let $M^\iota = \{i \in \omega \mid \tilde{\psi}_i^\iota \text{ is frequently equal to } \infty^\iota\}$ for $\iota \in 2$: if $|M^0| = \omega$, then the property $\langle \alpha_4 \rangle$ at the point ∞^1 of X^1 easily gives the property $\langle \alpha_4 \rangle$ at $\langle \infty^0, \infty^1 \rangle$, in this case; if $|M^1| = \omega$, the situation is symmetric. If $|M^\iota| < \omega$ for every $\iota \in 2$, then we may suppose that $\tilde{\psi}_i^\iota \colon \omega \to D^\iota$ for every $i \in \omega$; hence the hypothesis gives the property $\langle \alpha_4 \rangle$ at $\langle \infty^0, \infty^1 \rangle$, in this case. \Box

Lemma 6. Let $a \in X$, where X is any topological space, and $(a_n)_{n \in \omega}$ be a sequence in X with $\lim_{n \to +\infty} a_n = a$. For every $m \in \omega$, let k_m be an element of K—so that $(a_{k_m(i)})_{i \in \omega}$ is a subsequence of $(a_n)_{n \in \omega}$; then there exists $j \in {}^{\omega}\omega$ such that for every $j' \in {}^{\omega}\omega$ with $j' \geq j$, $\lim_{m \to +\infty} a_{k_m(j'(m))} = a$.

PROOF: Define j by induction: let j(0) be arbitrary; if j(m) is defined, let j(m+1) be such that $k_{m+1}(j(m+1)) > k_m(j(m))$ (this is possible because $\lim_{n\to+\infty} k_{m+1}(n) = +\infty$). Suppose now $j' \ge j$: given any nbhd V of a, we know that there exists $\bar{n} \in \omega$ such that $\forall n \ge \bar{n}$: $a_n \in V$; since $m \mapsto k_m(j(m))$ is strictly increasing, there exists $\bar{m} \in \omega$ such that $k_{\bar{m}}(j(\bar{m})) \ge \bar{n}$; then for every $m \ge \bar{m}$ we have $k_m(j'(m)) \ge k_m(j(m)) \ge k_{\bar{m}}(j(\bar{m})) \ge \bar{n}$ (because k_m is strictly increasing) and hence $a_{k_m(j'(m))} \in V$.

Lemma 7. Let η^{ι} , for $\iota \in 2$, be a one-to-one function from ω to 2^{ω} , and for every $m \in \omega$ let $\tilde{\Psi}_m : \omega \to \omega \times \omega$ be such that $\tilde{\Psi}_m = \tilde{\psi}_m^0 \Delta \tilde{\psi}_m^1$, with $\operatorname{Im} \tilde{\psi}_m^{\iota} \subseteq$ $\operatorname{Im} \varphi_{\eta^{\iota}(m)}^{\iota}$ and $\tilde{\psi}_m^{\iota} \in \tilde{\Phi}$ for $\iota \in 2$. Then there exists $\tilde{\Psi} : \omega \to \omega \times \omega$ such that $\lim_{m \to +\infty} \tilde{\Psi}(m) = \langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle$ and $\tilde{\Psi}(m) \in \operatorname{Im} \tilde{\Psi}_m$ for every $m \in \omega$.

PROOF: For $\iota \in 2$, let $\mu^{\iota}: \omega \to \text{DIP}(\omega)$ be defined by $\mu^{\iota}(m) = x_{\eta^{\iota}(m)}$: then μ^{ι} is one-to-one. For every $\langle \iota, m \rangle \in 2 \times \omega$, there exists $\gamma_m^{\iota} \in \omega_1$ such that $\mu^{\iota}(m) \in M_{\gamma_m^{\iota}}$ (remember the definition of $\text{DIP}(\omega)$): take $\hat{\gamma} \in \omega_1$ such that $\gamma_m^{\iota} < \hat{\gamma}$ for every $\langle \iota, m \rangle \in 2 \times \omega$. Also, for every $\langle \iota, m \rangle \in 2 \times \omega$ there exists a $\phi_m^\iota \in \tilde{\Phi}$ such that

$$\hat{\psi}_m^\iota = \varphi_{\eta^\iota(m)}^\iota \circ \phi_m^\iota$$

- namely, $\phi_m^{\iota} = (\varphi_{\eta^{\iota}(m)}^{\iota})^{-1} \circ \tilde{\psi}_m^{\iota}$; define $\hat{\theta}^{\iota} \in \Theta$, for $\iota \in 2$, by $\hat{\theta}^{\iota}(m) = \phi_m^{\iota}$, and take $\beta^{\iota} \in 2^{\omega}$ such that $\hat{\theta}^{\iota} = \theta_{\beta^{\iota}}$. Then $\langle \mu^0, \mu^1, \beta^0, \beta^1 \rangle \in M_{\hat{\gamma}} \subseteq \text{DIP}(\omega)$ and hence there exists $\hat{\alpha} \in 2^{\omega} \setminus \omega$ such that $\langle \mu^0, \mu^1, \beta^0, \beta^1 \rangle = x_{\hat{\alpha}}$; we claim that $\tilde{\Psi} = \tilde{\varphi}_{\hat{\alpha}}^0 \Delta \tilde{\varphi}_{\hat{\alpha}}^1 = \varphi_{\hat{\alpha}}^0 \Delta \tilde{\varphi}_{\hat{\alpha}}^1$ has the desired properties.

$$\begin{split} \tilde{\Psi} &= \tilde{\varphi}^0_{\hat{\alpha}} \Delta \tilde{\varphi}^1_{\hat{\alpha}} = \varphi^0_{\hat{\alpha}} \Delta \tilde{\varphi}^1_{\hat{\alpha}} \text{ has the desired properties.} \\ \text{Indeed, since } \tilde{\varphi}^1_{\hat{\alpha}} \in \tilde{\Phi}, \text{ Im } \tilde{\varphi}^1_{\hat{\alpha}} \subseteq \text{Im } \varphi^1_{\hat{\alpha}}, \text{ and } \lim_{m \to +\infty} \varphi^1_{\hat{\alpha}}(m) = \infty_{\Phi^1}, \text{ we also} \\ \text{have that } \lim_{m \to +\infty} \tilde{\varphi}^1_{\hat{\alpha}}(m) = \infty_{\Phi^1}; \text{ since } \tilde{\varphi}^0_{\hat{\alpha}} = \varphi^0_{\hat{\alpha}}, \text{ we get:} \end{split}$$

$$\lim_{m \to +\infty} \left(\tilde{\varphi}^{0}_{\hat{\alpha}} \Delta \tilde{\varphi}^{1}_{\hat{\alpha}} \right) (m) = \left\langle \infty_{\Phi^{0}}, \infty_{\Phi^{1}} \right\rangle.$$

On the other hand, by (4) we know that there exists a $j \in {}^{\omega}\omega$ such that

$$\tilde{\varphi}_{\hat{\alpha}}^{\iota}(m) = \left(\vartheta_{\hat{\alpha}}^{\iota}(m)\right) \left(\left(\theta_{\beta^{\iota}}(m)\right) \left(j(m)\right) \right) \text{ for every } \langle \iota, m \rangle \in 2 \times \omega,$$

where $\vartheta_{\hat{\alpha}}^{\iota}(m) = \varphi_{\alpha^{\sharp}(\mu^{\iota}(m))}^{\iota} = \varphi_{\alpha^{\sharp}(x_{\eta^{\iota}(m)})}^{\iota} = \varphi_{\eta^{\iota}(m)}^{\iota}$. Since $\theta_{\beta^{\iota}}(m) = \hat{\theta}^{\iota}(m) = \phi_{m}^{\iota}$ for $\langle \iota, m \rangle \in 2 \times \omega$, we have that $\tilde{\varphi}_{\hat{\alpha}}^{\iota}(m) = (\varphi_{\eta^{\iota}(m)}^{\iota} \circ \phi_{m}^{\iota})(j(m)) = \tilde{\psi}_{m}^{\iota}(j(m))$, and hence for every $m \in \omega$: $\tilde{\Psi}(m) = \langle \tilde{\varphi}_{\hat{\alpha}}^{0}(m), \tilde{\varphi}_{\hat{\alpha}}^{1}(m) \rangle = \langle \tilde{\psi}_{m}^{0}(j(m)), \tilde{\psi}_{m}^{1}(j(m)) \rangle$ $\in \operatorname{Im} \tilde{\Psi}_{m}$.

Corollary 8. Let η be a one-to-one function from ω to 2^{ω} , $\iota \in 2$ and for every $m \in \omega$ let $\tilde{\psi}_m$ be an element of $\tilde{\Phi}$ such that $\operatorname{Im} \tilde{\psi}_m \subseteq \operatorname{Im} \varphi_{\eta(m)}^{\iota}$. Then there exists $\tilde{\psi} \in {}^{\omega}\omega$ such that $\lim_{m \to +\infty} \tilde{\psi}(m) = \infty_{\Phi^{\iota}}$ and $\tilde{\psi}(m) \in \operatorname{Im} \tilde{\psi}_m$ for every $m \in \omega$.

PROOF: We may suppose $\iota = 0$. Put $\eta^0 = \eta^1 = \eta$ and, for every $m \in \omega$, let $\tilde{\psi}^0_m = \tilde{\psi}_m, \, \tilde{\psi}^1_m = \varphi^1_{\eta(m)}$ and $\tilde{\Psi}_m = \tilde{\psi}^0_m \Delta \tilde{\psi}^1_m$. If $\tilde{\Psi} = \tilde{\psi}^0 \Delta \tilde{\psi}^1$ satisfies the thesis of Lemma 7, then $\tilde{\psi}^0$ is the required $\tilde{\psi}$.

Lemma 9. If φ', φ'' are functions from ω to any set E such that $|\operatorname{Im} \varphi' \cap \operatorname{Im} \varphi''| = \omega$, then there exist $k', k'' \in K$ such that $\varphi' \circ k' = \varphi'' \circ k''$ (i.e., φ' and φ'' have a common subsequence), and such a function is one-to-one.

PROOF: We will construct simultaneously k' and k'' by induction. Put $F = \text{Im } \varphi' \cap \text{Im } \varphi''$ and fix $a_0 \in F$: let k'(0) be an element of $(\varphi')^{-1}(a_0)$ and k''(0) an element of $(\varphi'')^{-1}(a_0)$, so that $\varphi'(k'(0)) = a_0 = \varphi''(k'(0))$.

Suppose now to have defined k'(m'), k''(m') for every $m' \leq m$: since F is infinite, the set $F \setminus \{\varphi'(n) \mid n \leq k'(m)\} \cup \{\varphi''(n) \mid n \leq k''(m)\}\}$ contains a point a_{m+1} . Then choose $k'(m+1) \in (\varphi')^{-1}(a_{m+1})$ and $k''(m+1) \in (\varphi'')^{-1}(a_{m+1})$: thus k'(m+1) > k'(m), k''(m+1) > k(m), $\varphi'(k'(m+1)) = a_{m+1} = \varphi''(k''(m+1))$ and $\varphi'(k'(m+1)) \neq \varphi'(k'(m'))$ for every $m' \leq m$.

C. Costantini

We prove now that X_{Φ^0} , X_{Φ^1} and $X_{\Phi^0} \times X_{\Phi^1}$ are $\langle \alpha_4 \rangle$ -spaces. By Lemma 5, it is sufficient to show that whenever $(\hat{\Psi}_i)_{i \in \omega}$ is a sequence of functions from ω to $\omega \times \omega$ such that

$$\forall i \in \omega: \lim_{n \to +\infty} \hat{\Psi}_i(n) = \langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle,$$

there exists a $\hat{\Psi}: \omega \to \omega \times \omega$ such that $\left| \left\{ i \in \omega \, \middle| \, \mathrm{Im} \, \hat{\Psi} \cap \mathrm{Im} \, \hat{\Psi}_i \neq \emptyset \right\} \right| = \omega.$

For every $i \in \omega$, we have that $\hat{\Psi}_i = \hat{\psi}_i^0 \Delta \hat{\psi}_i^1$, where $\lim_{n \to +\infty} \hat{\psi}_i^t(n) = \infty_{\Phi^i}$ for $i \in 2$. By Remark 1, for every $i \in \omega$ there exists $\alpha_i^0 \in 2^\omega$ such that $|\operatorname{Im} \varphi_{\alpha_i^0} \cap \operatorname{Im} \hat{\psi}_i^0| = \omega$; now use Lemma 9 to get a $\hat{k}_i^0 \in K$ such that $\hat{\psi}_i^0 \circ \hat{k}_i^0$ is a one-to-one subsequence of $\varphi_{\alpha_i^0}^0$. Of course, for every $i \in \omega$ we still have that $\lim_{m \to +\infty} (\hat{\psi}_i^1 \circ \hat{k}_i^0)(m) = \infty_{\Phi^1}$, hence by Remark 1 there exists α_i^1 such that $|\operatorname{Im} \varphi_{\alpha_i^1}^1 \cap \operatorname{Im} (\hat{\psi}_i^1 \circ \hat{k}_i^0)| = \omega$; using again Lemma 9, we get a $\tilde{k}_i^1 \in K$ such that $\hat{\psi}_i^1 \circ \hat{k}_i^0 \circ \hat{k}_i^1$ is a one-to-one subsequence of $\varphi_{\alpha_i^1}^1$.

Putting, for $\langle \iota, i \rangle \in 2 \times \omega$, $\dot{\psi}_{i}^{\iota} = \tilde{\psi}_{i}^{\iota} \circ \hat{k}_{i}^{0} \circ \hat{k}_{i}^{1}$ and $\Psi_{i} = \psi_{i}^{0} \Delta \psi_{i}^{1} = \hat{\Psi} \circ \hat{k}_{i}^{0} \circ \hat{k}_{i}^{1}$, for every $\langle \iota, i \rangle \in 2 \times \omega$ we have at the same time that Ψ_{i} is a subsequence of $\hat{\Psi}_{i}$ and that ψ_{i}^{ι} is a one-to-one subsequence of $\varphi_{\alpha_{i}^{\iota}}^{\iota}$. In particular, if we can find a $\Psi: \omega \to \omega \times \omega$ with $\lim_{m \to +\infty} \Psi(m) = \langle \infty_{\Phi^{0}}, \infty_{\Phi^{1}} \rangle$, such that $|\{i \in \omega \mid \text{Im } \Psi \cap \text{Im } \Psi_{i} \neq \emptyset\}| = \omega$, we will also have that

$$\left|\left\{i\in\omega\,\big|\,\mathrm{Im}\,\,\Psi\cap\mathrm{Im}\,\,\hat{\Psi}_i\neq\emptyset\right\}\right|=\omega.$$

Let $A^0 = \{ \alpha_i^0 \mid i \in \omega \}$: we have two cases.

1st case. A^0 is infinite. Fix $H^0 \subseteq \omega$ such that $\{\alpha_i^0 | i \in H^0\} = A^0$ and $\alpha_{i'}^0 \neq \alpha_{i''}^0$ for $i', i'' \in H^0$ with $i' \neq i''$. Consider now $\tilde{A}^1 = \{\alpha_i^1 | i \in H^0\}$.

1st subcase. \tilde{A}^1 is infinite.

Then there exists an (infinite) $\tilde{H} \subseteq H^0$ such that $\{\alpha_i^1 \mid i \in \tilde{H}\} = \tilde{A}^1$ and $\alpha_{i'}^1 \neq \alpha_{i''}^1$ for $i', i'' \in \tilde{H}$ with $i' \neq i''$. Let $\tilde{A}^0 = \{\alpha_i^0 \mid i \in \tilde{H}\}$: since $\tilde{H} \subseteq H^0$, we also have that $\alpha_{i'}^0 \neq \alpha_{i''}^0$ for $i', i'' \in \tilde{H}$ with $i' \neq i''$.

As $|\tilde{H}| = \omega$, there exists a (unique) $\tilde{k} \in K$ such that $\operatorname{Im} \tilde{k} = \tilde{H}$; then $\{\alpha_{\tilde{k}(m)}^{\iota} | m \in \omega\} = \tilde{A}^{\iota}$ for $\iota \in 2$. Define $\eta^{\iota} : \omega \to 2^{\omega}$, for $\iota \in 2$, by $\eta^{\iota}(m) = \alpha_{\tilde{k}(m)}^{\iota}$: since each η^{ι} is one-to-one and $\operatorname{Im} \psi_{\tilde{k}(m)}^{\iota} \subseteq \operatorname{Im} \varphi_{\eta^{\iota}(m)}^{\iota}$ for every $\langle \iota, m \rangle \in 2 \times \omega$ (because $\psi_{\tilde{k}(m)}^{\iota}$ is a subsequence of $\varphi_{\eta^{\iota}(m)}^{\iota}$), by Lemma 7 there exists $\tilde{\Psi} : \omega \to \omega \times \omega$ such that $\lim_{m \to +\infty} \tilde{\Psi}(m) = \langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle$ and $\operatorname{Im} \tilde{\Psi} \cap \operatorname{Im} \Psi_{\tilde{k}(m)} \neq \emptyset$ for every $m \in \omega$, which implies that $|\{i \in \omega \mid \operatorname{Im} \tilde{\Psi} \cap \operatorname{Im} \Psi_i \neq \emptyset\}| = \omega$.

2^{nd} subcase. \tilde{A}^1 is finite.

Then there exists an infinite subset \tilde{H} of H^1 and an $\hat{\alpha} \in 2^{\omega}$ such that $\forall i \in \tilde{H}: \alpha_i^1 = \hat{\alpha}$. Again, let $\tilde{k} \in K$ be such that $\text{Im } \tilde{k} = \tilde{H}:$ since $\tilde{H} \subseteq H^0$, we have that $\eta: \omega \to 2^{\omega}$ defined by $\eta(m) = \alpha_{\tilde{k}(m)}^0$ is one-to-one.

For every $m \in \omega$ we have that $\psi_{\tilde{k}(m)}^{1}$ is a one-to-one subsequence of $\varphi_{\alpha_{\tilde{k}(m)}^{1}}^{1}$, which coincides with $\varphi_{\hat{\alpha}}^{1}$ because $\tilde{k}(m) \in \tilde{H}$; hence by Lemma 6 there exists $j \in {}^{\omega}\omega$ such that

(8)
$$\forall j' \ge j : \lim_{m \to +\infty} \psi^1_{\tilde{k}(m)}(j'(m)) = \infty_{\Phi^1}.$$

Now define, for every $m \in \omega$, a $\tilde{\psi}_m \in \tilde{\Phi}$ by:

(9)
$$\tilde{\psi}_m(n) = \psi^0_{\tilde{k}(m)} \left(n + j(m) \right)$$

Observe that, for every $m \in \omega$, Im $\tilde{\psi}_m \subseteq \operatorname{Im} \psi^0_{\tilde{k}(m)} \subseteq \operatorname{Im} \varphi^0_{\alpha^0_{\tilde{k}(m)}} = \operatorname{Im} \varphi^0_{\eta(m)}$. Then by Corollary 8 there exists $\psi^0 \in {}^{\omega}\omega$ such that

$$\lim_{m \to +\infty} \psi^0(m) = \infty_{\Phi^0} \quad \text{and} \quad \forall \, m \in \omega : \psi^0(m) \in \text{Im } \tilde{\psi}_m;$$

using (9), we have that for every $m \in \omega$ there exists $\tilde{n}(m) \in \omega$ such that $\psi^0(m) = \psi^0_{\tilde{k}(m)}(\tilde{n}(m) + j(m))$.

Put $j'(m) = \tilde{n}(m) + j(m)$ and define $\psi^1 \in {}^{\omega}\omega$ by $\psi^1(m) = \psi^1_{\tilde{k}(m)}(j'(m))$: then $\lim_{m \to +\infty} \psi^1(m) = \infty_{\Phi^1}$ by (8). Thus, putting $\Psi = \psi^0 \Delta \psi^1$, we have that

$$\lim_{n \to +\infty} \Psi(m) = \langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle;$$

moreover, for every $m \in \omega$,

$$\Psi(m) = \left\langle \psi^{\mathbf{0}}(m), \psi^{\mathbf{1}}(m) \right\rangle = \left\langle \psi^{\mathbf{0}}_{\tilde{k}(m)}(j'(m)), \psi^{\mathbf{1}}_{\tilde{k}(m)}(j'(m)) \right\rangle$$
$$= \Psi_{\tilde{k}(m)}(j'(m)) \in \operatorname{Im} \Psi_{\tilde{k}(m)},$$

so that $|\{i \in \omega \mid \text{Im } \Psi \cap \text{Im } \Psi_i \neq \emptyset\}| = \omega.$

 2^{nd} case. A^0 is finite.

Then there exists an infinite subset H^0 of ω and an $\hat{\alpha}^0 \in 2^{\omega}$ such that $\forall i \in H^0: \alpha_i^0 = \hat{\alpha}^0$. Again, let $\tilde{A}^1 = \{\alpha_i^1 \mid i \in H^0\}$.

 1^{st} subcase. \tilde{A}^1 is infinite.

Then there exists an infinite subset \tilde{H} of H^1 such that $\{\alpha_i^1 \mid i \in \tilde{H}\} = \tilde{A}^1$ and $\alpha_{i'}^1 \neq \alpha_{i''}^1$ for distinct $i', i'' \in \tilde{H}$. The situation is symmetric to the 2nd subcase of the 1st case.

 2^{nd} subcase. \tilde{A}^1 is finite.

Then there exists an infinite $\tilde{H} \subseteq H^0$ and an $\hat{\alpha}^1 \in 2^{\omega}$ such that $\forall i \in \tilde{H}: \alpha_i^1 = \hat{\alpha}^1$; clearly, since $\tilde{H} \subseteq H^0$, we also have that $\forall i \in \tilde{H}: \alpha_i^0 = \hat{\alpha}^0$. Let $\tilde{k} \in K$ such that Im $\tilde{k} = \tilde{H}$: then for every $\langle \iota, m \rangle \in 2 \times \omega$ we have that $\psi_{\tilde{k}(m)}^{\iota}$ is a subsequence of $\varphi_{\alpha_{\tilde{k}(m)}^{\iota}}^{\iota} = \varphi_{\hat{\alpha}^{\iota}}^{\iota}$. Applying Lemma 6, we get $j^0, j^1 \in {}^{\omega}\omega$ such that

$$\forall \iota \in 2: \forall j' \in {}^{\omega}\omega: \left(j' \ge j^{\iota} \Longrightarrow \lim_{m \to +\infty} \psi_{\tilde{k}(m)}^{\iota}(j'(m)) = \infty_{\Phi^{\iota}}\right).$$

Let $j = \sup \left\{ j^0, j^1 \right\}$ and define $\psi^{\iota} \in {}^{\omega}\omega$ for $\iota \in 2$ by:

$$\psi^{\iota}(m) = \psi^{\iota}_{\tilde{k}(m)}(j(m))$$

for every $m \in \omega$. Putting $\Psi = \psi^0 \Delta \psi^1$, we have that $\lim_{m \to +\infty} \Psi(m) = \langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle$ and that

$$\forall m \in \omega: \Psi(m) = \left\langle \psi^{0}(m), \psi^{1}(m) \right\rangle = \left\langle \psi^{0}_{\tilde{k}(m)}(j(m)), \psi^{1}_{\tilde{k}(m)}(j(m)) \right\rangle \in \operatorname{Im} \Psi_{\tilde{k}(m)},$$

whence $\left|\left\{i \in \omega \mid \text{Im } \Psi \cap \text{Im } \Psi_i \neq \emptyset\right\}\right| = \omega.$

Now we proceed to show that $X_{\Phi^0} \times X_{\Phi^1}$ is not Fréchet-Urysohn. First of all, we prove that putting $D = \{ \langle \ell, \ell \rangle | \ell \in \omega \}$, we have that $\langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle \in \overline{D}$ in $X_{\Phi^0} \times X_{\Phi^1}$.

Indeed, let V^0, V^1 be arbitrary nbhds of $\infty_{\Phi^0}, \infty_{\Phi^1}$ in X_{Φ^0}, X_{Φ^1} , respectively. For every $m \in \omega, \varphi_m^0 = f_m^0$ belongs to Φ^0 , and hence there exists $j \in \omega$ such that

(10)
$$\forall m \in \omega : \forall n \ge j(m) : f_m^0(n) \in V^0.$$

Take $\hat{\alpha} \in 2^{\omega} \setminus \omega$ such that $j = \hat{j}_{\hat{\alpha}}$: then (5), (6) and (7) (for $\alpha = \hat{\alpha}$) combine to show that

$$\forall m \in \omega : \exists n' \ge \hat{j}_{\hat{\alpha}}(m) : f_m^0(n') \in \operatorname{Im} \rho_{\hat{\alpha}};$$

hence we can associate to every $m \in \omega$ a $\tilde{n}(m) \geq \hat{j}_{\hat{\alpha}}(m)$ such that

(11)
$$f_m^0(\tilde{n}(m)) \in \operatorname{Im} \, \rho_{\hat{\alpha}} \subseteq \operatorname{Im} \, \varphi_{\hat{\alpha}}^1$$

Since $\lim_{n\to+\infty} \varphi^1_{\hat{\alpha}}(n) = \infty_{\Phi^1}$ in X_{Φ^1} , there exists $n^{\sharp} \in \omega$ such that

(12)
$$\forall n \ge n^{\sharp} : \varphi_{\hat{\alpha}}^{1}(n) \in V^{1}.$$

Observe that $m \mapsto f_m^0(\tilde{n}(m))$ is one-to-one from ω to ω (because Im $f_{m'}^0 \cap$ Im $f_{m''}^0 = F_{0,m'} \cap F_{0,m''} = \emptyset$ for $m' \neq m''$); therefore the set $\{f_m^0(\tilde{n}(m)) \mid m \in \omega\}$ cannot be contained into $\{\varphi_{\hat{\alpha}}^{1}(n) \mid n < n^{\sharp}\}$, and hence by (11) there exists $n^{*} \ge n^{\sharp}$ such that

$$\varphi_{\hat{\alpha}}^{1}\left(n^{*}\right) \in \left\{f_{m}^{0}\left(\tilde{n}(m)\right) \mid m \in \omega\right\}.$$

Since $\varphi_{\hat{\alpha}}^1(n^*) \in V^1$ by (12), and $f_m^0(\tilde{n}(m)) \in V^0$ for every $m \in \omega$ (because of (10) and the fact that $\tilde{n}(m) \geq \hat{j}_{\hat{\alpha}}(m) = j(m)$), we conclude that for some $\ell \in \omega$, $\langle \ell, \ell \rangle \in V^0 \times V^1$.

Now, if $X_{\Phi^0} \times X_{\Phi^1}$ were Fréchet, there would exist a sequence in D which converges to $\langle \infty_{\Phi^0}, \infty_{\Phi^1} \rangle$, and clearly it could be supposed to be one-to-one. Thus, there would exist $\tilde{\varphi} \in \tilde{\Phi}$ such that $\lim_{n \to +\infty} \tilde{\varphi}(n) = \infty_{\Phi^0}$ in X_{Φ^0} and $\lim_{n \to +\infty} \tilde{\varphi}(n) = \infty_{\Phi^1}$ in X_{Φ^1} . From the former relation we have that $|\operatorname{Im} \tilde{\varphi} \cap \operatorname{Im} \varphi^0_{\hat{\alpha}}| = \omega$ for some $\hat{\alpha} \in 2^{\omega}$; by Lemma 9, there exists $\varphi^* \in \tilde{\Phi}$ which is a common subsequence of $\tilde{\varphi}$ and $\varphi^0_{\hat{\alpha}}$. In particular, since $\lim_{n \to +\infty} \tilde{\varphi}(n) = \infty_{\Phi^1}$ in X_{Φ^1} , we also have that $\lim_{n \to +\infty} \varphi^*(n) = \infty_{\Phi^1}$ in X_{Φ^1} , so that there exists $\alpha^* \in 2^{\omega}$ such that $|\operatorname{Im} \varphi^* \cap \operatorname{Im} \varphi^1_{\alpha^*}| = \omega$, and hence $|\operatorname{Im} \varphi^0_{\hat{\alpha}} \cap \operatorname{Im} \varphi^1_{\alpha^*}| = \omega$ (because $\operatorname{Im} \varphi^* \subseteq \operatorname{Im} \varphi^0_{\hat{\alpha}}$). This contradicts the fact that every element of Φ^0 is almost disjoint from every element of Φ^1 .

Acknowledgment. The author is very grateful to Alan Dow for general references about $\langle \alpha_i \rangle$ -spaces.

References

- [Ar1] Arhangel'skii A.V., The frequency spectrum of a topological space and the classification of spaces, Sov. Math. Dokl. 13 (1972), 265–268.
- [Ar2] Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Transl. Moscow Math. Soc., Issue 2 (1981), 163–200.
- [CS] Costantini C., Simon P., An α_4 , not Fréchet product of α_4 Fréchet spaces, Topology Appl., to appear.
- [Do] Dow A., Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241–247.
- [En] Engelking R., General Topology. Revised and Completed Ed., Heldermann, Berlin, 1989.
- [Ku] Kunen K., Set Theory. An Introduction to Independence Proofs, Nort-Holland, Amsterdam, 1980.
- [No] Nogura T., The product of $\langle \alpha_i \rangle$ -spaces Topology Appl. **21** (1985), 251–259.
- [OI] Olson R.C., Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1–28.
- [Si1] Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749–753.
- [Si2] Simon P., A hedgehog in a product, Acta Univ. Carolin.—Math. Phys., to appear.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI TORINO, VIA CARLO ALBERTO 10, 10123 TORINO, ITALY

(Received August 10, 1998)