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Nonuniqueness for some linear oblique

derivative problems for elliptic equations

Gary M. Lieberman

Abstract. It is well-known that the “standard” oblique derivative problem, ∆u = 0
in Ω, ∂u/∂ν − u = 0 on ∂Ω (ν is the unit inner normal) has a unique solution even
when the boundary condition is not assumed to hold on the entire boundary. When the
boundary condition is modified to satisfy an obliqueness condition, the behavior at a

single boundary point can change the uniqueness result. We give two simple examples
to demonstrate what can happen.
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Introduction

For an elliptic operator L defined in a domain Ω ⊂ R
n, the oblique derivative

problem is

(0.1) Lu = f in Ω, βiDiu+ γu = g on ∂Ω,

where β is a vector such that β · ν > 0 for ν the unit inner normal to ∂Ω.
When the data of the problem are sufficiently smooth and L has the form Lu =
aijDiju + biDiu + cu with c ≤ 0, γ ≤ 0 with at least one of these functions is
not identically zero, it is a standard result in linear elliptic theory (see, e.g. [1,
Section 6.7]) that (0.1) has a unique solution which is C1 (actually C2,α) up to
∂Ω. In a series of papers [2,3,4], the author looked at a generalization of this
problem in which ∂Ω is only Lipschitz. Under suitable regularity hypotheses on
aij , bi, c, βi, and γ, it was shown that (0.1) still has a unique solution provided the
obliqueness condition β · ν > 0 is appropriately modified. A key assumption was
that the boundary condition had to be satisfied at every point on the boundary.
At a point of discontinuity of β, such a condition seems unnecessarily restrictive
because it requires a specification of β there. In this paper, we investigate the
role of this assumption.
To understand the significance of our investigation, we note that the obvious

choice of a model problem is (0.1) with L = ∆, the Laplace operator, and β = ν.
If Ω is a (smoothly) truncated two-dimensional wedge, then (assuming that γ ≤ 0
and γ 6≡ 0) problem (0.1) with no specification of boundary condition at the
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vertex of the angle does not have a unique solution; however, the uniqueness
is immediately recovered if we consider only bounded solutions. We shall see
that the special nature of the boundary condition in this case is crucial to this
uniqueness in a suitably restricted class even if we consider only simple domains
and L = ∆.
We recall here that a vector field β is oblique at a point x0 ∈ ∂Ω if there is a

coordinate system (x1, . . . , xn) centered at x0 with β(x0) parallel to the positive
xn-axis such that Ω can be written locally as

{x : xn > f(x1, . . . , xn−1)}

for some Lipschitz function f . Moreover, the boundary condition need only hold
in the following generalized sense:

lim
t→0+

u(x+ tβ(x)) − u(x)

t
= −γ(x)u(x) + g(x)

for any x ∈ ∂Ω. The obliqueness of β guarantees that x + tβ(x) ∈ Ω for x ∈ ∂Ω
and t sufficiently small and positive. We also note that in some circumstances a
discontinuous vector field defined in a deleted neighborhood of x0 has a reasonable
extension to x0. Specifically, suppose Ω ⊂ R

2 and that σ1 and σ2 are two line
segments in ∂Ω with a common endpoint x0. Suppose also that there are two
vectors β1 and β2 such that

lim
x→x0
x∈σ1

β(x) = β1 and lim
x→x0
x∈σ2

β(x) = β2,

with β oblique at each interior point of σ1 and σ2. If β · Du is prescribed on
σ1 ∪ σ2 and if Du is continuous at x0, then we actually have prescribed β1 · Du
and β2 · Du at x0. Therefore it is reasonable to define β(x0) to be any convex
combination of β1 and β2. (Taking a convex combination rather than an arbitrary
linear combination is important because then inequalities of the form β · Du > 0
on ∂Ω are true by extension if they are true on σ1 ∪ σ2.) In this situation, it
is convenient to say that β has an oblique extension to x0. (This idea was used
significantly in [4].)
We also recall the following uniqueness result, which is essentially [2, Corol-

lary 2.5].

Proposition 1. Let ∂Ω be piecewise C1. Suppose L is a uniformly elliptic op-
erator with bounded coefficients aij , bi, and c. Suppose also that β and γ are
bounded on ∂Ω with β oblique at each point of ∂Ω. If c ≤ 0 and γ ≤ 0, then any
two C0(Ω) ∩ C2(Ω) solutions of (0.1) differ by a constant, which must be zero
unless c ≡ 0 and γ ≡ 0.
In Section 1, we give an example of an oblique derivative problem in a smooth

domain with discontinuous β which has a unique solution provided the oblique
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derivative condition is satisfied at every point of the boundary but which has
another solution if this condition fails at a single point. Moreover, the second
solution that we find is always bounded and may be Hölder continuous with
prescribed exponent less than one. In Section 2, we give an example of a vector
field which is oblique in a deleted neighborhood of a nonsmooth point on the
boundary but which does not have an oblique extension there; again, there will
be multiple solutions if no boundary condition is specified at the nonsmooth point.
For our second example, all solutions are analytic functions of the variables, so
additional smoothness is not enough to guarantee uniqueness. Both examples
are elementary and work when the operator is the two-dimensional Laplacian.
Accordingly, we use the coordinates (x, y) in R

2.

1. Nonuniqueness in a smooth domain

Let Ω be an open connected set in R
2 with y > 0 in Ω such that the segment

S = {y = 0,−1 < x < 1} is on ∂Ω. We then define β as follows: Choose

λ ∈ (0, 12 ) ∪ (12 , 1). For (x, y) ∈ S, we set

β(x, y) =

{

(0, 1) if x > 0

(tan(λπ), 1) if x < 0.
On the remainder of ∂Ω, β is taken to be continuous such that β · ν ≥ 1. We also
take γ to be a smooth, nonpositive function which vanishes on S but which is not
identically zero on ∂Ω. Now we define w via polar coordinates (r, θ) by

w(x, y) = rλ cos(λθ),

and then we define g on ∂Ω by g = 0 on S, g = β ·Dw+ γw on ∂Ω \S. It follows
that

(1.1) ∆w = 0 in Ω, βiDiw + γw = g on ∂Ω \ {(0, 0)}.
On the other hand, from [3, Theorem 1.4], there is a unique solution u of

(1.1)′ ∆u = 0 in Ω, βiDiu+ γu = g on ∂Ω,

and this solution is C1,α up to ∂Ω for some α > 0. Since w is only Cλ near (0, 0),
it follows that u and w are different solutions of (1.1). On the other hand, u is
the unique solution of (1.1)′ even if we take β(0, 0) to be any convex combination
of (0, 1) and (λ tan(λπ), 1). Moreover, as λ → 1, λ tan(λπ) → 0, so even the
combination of hypotheses that u has Hölder exponent arbitrarily close to one
and that β is pointwise arbitrarily close to a constant vector in a neighborhood
of a boundary point is not enough to guarantee uniqueness unless the boundary
condition is in force at that point.
In fact, the regularity issue here is more subtle than in the normal derivative

boundary condition case since Proposition 1 holds for continuous solutions which
satisfy the boundary condition in the generalized sense indicated in the introduc-
tion, which means that the directional derivative of u in the direction of β exists.
Hence (as is also clear from the explicit form of w), the directional derivative of
w in the direction of β must not exist at (0, 0) for any β with β2 > 0.
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2. Nonuniqueness in a nonsmooth domain

Now we define the function g by

g(y) =







(1 − y2)1/2 if −1√
2

< y < 1

y +
√
2 if −

√
2 < y ≤ −1√

2

and let
Ω =

{

(x, y) : |x| < g(y),−
√
2 < y < 1

}

.

Then we define

β(x, y) =

{

(−x,−y) if y > 0

(−x/|x|, 0) if y ≤ 0

and γ(x, y) = max{y, 0}/(y− 2). Finally we use x0 to denote the point (0,−
√
2).

Then the problem

(2.1) ∆u = 0 in Ω, β · Du+ γu = 0 on ∂Ω \ {x0}

has the solution u = k[y− 2] for any real constant k. The vector field β is oblique
in the classical sense at every point of ∂Ω \ {x0} but it is not oblique at x0. It
is simple to see that we have a complete list of solutions of (2.1). The usual
uniqueness theory tells us that a positive maximum or a negative minimum to
this problem can only occur at x0. If we prescribe u(x0) = 0 (or β ·Du(0, 0) = 0,
for any vector other than (±1, 0)), then the solution must be identically zero.
Note that the example in Section 1 relies, at least indirectly, on a regularity is-

sue: w is not smooth at the point of discontinuity of β and the boundary condition
is not in force there. Here, our explicit solutions are analytic but the boundary
condition is not oblique at one point. In fact, the regularity is built into the local
structure of (2.1).
In addition, this example can be modified to show that the relative size of

the discontinuity set of β is not important. (In many cases, sets of singularities
are removable if they are small enough.) Returning to the general case of an
n-dimensions, we write x = (x1, . . . , xn) and x′ = (x1, . . . , xn−1). We now take

Ω to be the cone {|x′| < g(xn),−
√
2 < xn < 1}, and we write

β(x) =

{

(−x′,−xn) if xn > 0

(−x′/|x′|, 0) if xn ≤ 0

and γ(x) = max{xn, 0}/(xn − 2). If we use x0 to denote the point (0, . . . ,−
√
2),

then u = k[xn − 2] is a solution of (2.1) for any constant k. Now the singularity
set has Lebesgue measure zero, Hausdorff dimension zero, and zero capacity, so
the singular set for β can be arbitrarily small relative to the underlying space R

n.
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