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Characteristic zero loop space

homology for certain two-cones

Calin Popescu

Abstract. Given a principal ideal domain R of characteristic zero, containing 1/2, and a
two-cone X of appropriate connectedness and dimension, we present a sufficient algebraic
condition, in terms of Adams-Hilton models, for the Hopf algebra FH(ΩX;R) to be
isomorphic with the universal enveloping algebra of some R-free graded Lie algebra; as
usual, F stands for free part, H for homology, and Ω for the Moore loop space functor.

Keywords: two-cone, Moore loop space, differential graded Lie algebra, free Lie algebra
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Throughout the paper modules and tensor products are taken over a principal
ideal domain R of characteristic zero, containing 1/2; as usual, ̺(R) denotes the
least prime (or ∞) not invertible in R. Following [2], [4], given integer k ≥ 1 and
real r > 0, a CW-complex will be called (k, r)-mild if it is finite, k-connected,
and its dimension does not exceed kr. Halperin [4] shows that, if R ⊆ Q, and X
is a (k, ̺(R))-mild CW-complex (integer k ≥ 1) whose Moore loop space ΩX has
an R-torsion free homology H(ΩX ;R) with primitives P , then the natural arrow
U(P )→ H(ΩX ;R) is an isomorphism of graded Hopf algebras; here and for the
remainder of the paper, U denotes, of course, the universal enveloping algebra
functor over R. In particular, for R = Q, Halperin recovers a well-known result
established by Milnor and Moore [5] for simply connected pointed topological
spaces X . On the other hand, if R is a subring of Q, containing 1/6, and X is a
two-cone, Anick [1] gives reasonable algebraic conditions for H(ΩX ;R) to be R-
free and thereby to understand its algebra structure fairly well. His requirements
are that all of the so-called implicit primes for X be invertible in R, and a certain
graded Lie algebra LX , associated with X , be R-free. Our purpose here is to
exhibit the Hopf algebra FH(ΩX ;R) as the universal enveloping algebra of some
R-free graded Lie algebra, whatever the implicit primes of X and however LX

might be, at the cost of restricting the class of two-cones X . Here and for the
remainder of the paper, F stands for free part, and the Hopf algebra structure on
FH(ΩX ;R) is acquired via the comultiplication

FH(ΩX ;R)
FH(∆X)
−−−−−−→ FH(ΩX × ΩX ;R)

∼=
←− FH(ΩX ;R)⊗ FH(ΩX ;R),
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where ∆X : ΩX → ΩX×ΩX is the diagonal, and the isomorphism FH(ΩX ;R)⊗

FH(ΩX ;R)
∼=
−→ FH(ΩX×ΩX ;R) is given by the Künneth and Eilenberg-Zilber

theorems.
In order to state our result, recall that a two-cone X is the cofiber of a map

between two finite type wedges of spheres,

V
φ
→W → X, V = ∨i∈ISmi+1, W = ∨j∈JSnj+1, φ = ∨i∈Iφi,

subject to well-known reasonable standard constraints on the index sets I and J ,
and the dimensions mi and nj ([1]); since we will only be concerned with sim-
ply connected spaces, we assume positive integers mi and nj throughout. Recall
also that the tensor algebra T (xi)i∈I , with generators xi of dimension mi and
trivial differential, is an Adams-Hilton model for V over R, so the Pontrjagin
algebra H(ΩV ;R) is simply T (xi)i∈I ([1]); likewise, H(ΩW ;R) = T (yj)j∈J , with
generators yj of dimension nj . Finally, for each i ∈ I, let ξi denote the ele-
ment H(Ωφ;R)(xi) of H(ΩW ;R)mi . The notation in this paragraph will be kept
throughout the remainder of the paper.
We are now in a position to state our main result.

Theorem 1. If (T (xi)i∈I , 0) and (T (yj)j∈J , 0) are Adams-Hilton models for V

and W , respectively, such that, for some partition J = J ′ ∪ J ′′, with non-empty

J ′′, each ξi belongs to the R-span of the commutators [yj1 , [. . . , [yjt
, yj ] . . . ]],

with (not necessarily distinct) j1, . . . , jt ∈ J ′ and j ∈ J ′′, then the Hopf algebra

FH(ΩX ;R) is isomorphic with the universal enveloping algebra of some R-free
graded Lie algebra, provided that the dimension of X does not exceed n̺(R),
where n = min{nj : j ∈ J}.

Recalling further that the differential tensor algebra (T (x′i, yj)i∈I,j∈J , d), with

generators x′i of dimension mi + 1, dx′i = ξi and dyj = 0, may be taken to be an
Adams-Hilton model forX overR ([1]), in the light of Anick’s work [2], Theorem 1
is actually the topological counterpart of the following purely algebraic fact.

Theorem 2. With reference to the previous notation, if for some partition J =
J ′ ∪ J ′′, with non-empty J ′′, each ξi belongs to the R-span of the commutators
[yj1 , [. . . , [yjt

, yj ] . . . ]], with (not necessarily distinct) j1, . . . , jt ∈ J ′ and j ∈ J ′′,

then the natural arrow UFH(L(x′i, yj)i∈I,j∈J , d)→ FH(T (x′i, yj)i∈I,j∈J , d) is an
isomorphism of graded Hopf algebras.

In particular, the graded Lie algebra FH(L(x′i, yj)i∈I,j∈J , d) maps isomorphi-

cally onto the sub Lie algebra of primitive elements of FH(T (x′i, yj)i∈I,j∈J , d).

Of course, L denotes the free Lie algebra functor over R, and, writing for short
(A, d) instead of (T (x′i, yj)i∈I,j∈J , d), the Hopf algebra structure on FH(A, d) is
acquired by means of the comultiplication

FH(A, d)
FH(∆)
−−−−−→ FH((A, d)⊗ (A, d))

∼=
←− FH(A, d)⊗ FH(A, d),
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where ∆ : (A, d) → (A, d) ⊗ (A, d) is the comultiplication on (A, d), and the iso-

morphism FH(A, d)⊗FH(A, d)
∼=
−→ FH((A, d)⊗ (A, d)) is given by the Künneth

theorem. It might also be worth remarking here that no mildness condition is
required in the statement of Theorem 2.

We begin by proving Theorem 2.

Proof of Theorem 2: Since for an empty J ′ the result is a special case of
Theorem 1 in [6], we may (and will) henceforth assume J ′ non-empty, as well.
For the sake of brevity, write (L, d) for (L(x′i, yj)i∈I,j∈J , d) and note that the
inclusion ι : (L(yj)j∈J ′ , 0) →֒ (L, d) is a right inverse for the surjection π : (L, d)→

(L(yj)j∈J ′ , 0), sending the generators yj , j ∈ J ′, identically onto themselves, and
the remaining ones to zero. Then H(ι) is a right inverse for H(π) and there results
a trivial connecting morphism in the long exact homology sequence associated
with the (right split) short exact sequence of differential graded Lie algebras

(1) 0→ (K, d)
κ

−→ (L, d)
π
−→ (L(yj)j∈J ′ , 0)→ 0,

in which (K, d) is, of course, the kernel of π. Consequently,

0→ H(K, d)
H(κ)
−−−−→ H(L, d)

H(π)
−−−−→ L(yj)j∈J ′ → 0

is a short exact sequence of graded Lie algebras with right R-splitting H(ι), yield-
ing another short exact sequence of graded Lie algebras

(2) 0→ FH(K, d)
FH(κ)
−−−−−→ FH(L, d)

FH(π)
−−−−−→ L(yj)j∈J ′ → 0,

with a right R-splitting induced by H(ι). Since both (1) and (2) involve R-
free objects of finite type, the corresponding universal enveloping algebras form,
respectively, short exact sequences of homology Hopf algebras ([3]). Thus, (1)
yields

U(K, d)⊗ (T (yj)j∈J ′ , 0)
∼=
−→ U(L, d),

as left U(K, d)-modules and right (T (yj)j∈J ′ , 0)-comodules, under U(κ) ⊗ U(ι)

followed by multiplication; the fact that dyj = 0, for j ∈ J ′, is essential in identi-
fying U(K, d)⊗ (T (yj)j∈J ′ , 0) and U(L, d) as differential objects. Consequently,

(3) FHU(K, d)⊗ T (yj)j∈J ′

∼=
−→ FHU(L, d),

by the Künneth theorem. Similarly, (2) yields

(4) UFH(K, d)⊗ T (yj)j∈J ′

∼=
−→ UFH(L, d),

as left UFH(K, d)-modules and right T (yj)j∈J ′-comodules. We now turn to the
natural arrow UFH(K, d)→ FHU(K, d) and prove it an isomorphism of graded
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Hopf algebras; the first statement in Theorem 2 then follows at once by (3) and (4).
To show UFH(K, d) and FHU(K, d) isomorphic under the natural arrow, note
that K is the free graded Lie algebra on all commutators [yj1 , [. . . , [yjt

, x′i] . . . ]]

and [yj1 , [. . . , [yjt
, yj ] . . . ]], with (not necessarily distinct) j1, . . . , jt ∈ J ′, i ∈ I

and j ∈ J ′′. Recalling that all dyj = 0 and each dx′i = ξi was assumed to lie in
the R-span of the second kind of those commutators, it follows that the R-free
module spanned by the generators of K is stable under d, so the natural arrow
UFH(K, d) → FHU(K, d) is indeed an isomorphism of graded Hopf algebras
([6]). This proves the first statement in the theorem. The second now follows at
once by the Poincaré-Birkhoff-Witt theorem. �

We are now in a position to derive Theorem 1.

Proof of Theorem 1: Recall the notation (L, d), made in the preceding proof.
Since X is (n, ̺(R))-mild, it turns out that (L, d) is one of the ingredients of
Anick’s model for X over R ([2]). The object (L, d) actually comes with a quasi-

isomorphism of differential graded algebras θ : U(L, d)
≃
−→ C∗(ΩX ;R), which

preserves the diagonal up to differential graded algebra homotopy. Thus, H(θ) :
HU(L, d)→ H(ΩX ;R) is an isomorphism of graded algebras, identifying H(∆L)
with H(∆X ), where ∆L : U(L, d)→ U(L, d)⊗U(L, d) and ∆X : ΩX → ΩX×ΩX
are the respective diagonals. Consequently, FH(θ) identifies FHU(L, d) and
FH(ΩX ;R) as Hopf algebras, and nothing remains but apply Theorem 2. �

We now consider some examples. In what follows, the condition dim X ≤
n1̺(R) is, of course, to be implicitly assumed, whenever the Hopf algebra
FH(ΩX ;R) is under consideration. As one might expect, a first application
is related to the Whitehead product.

Example 3. Let I be finite, let J = {1, 2}, and set all mi = n1 + n2, with
n2 > n1. As an attaching map φi we might, for instance, take the Brouwer degree
ri self-map on Sn1+n2+1, followed by the Whitehead bracket ωn1,n2 : S

n1+n2+1 →

Sn1+1∨Sn2+1. Thus, X is the cofiber of a map ∨i∈IS
n1+n2+1 → Sn1+1∨Sn2+1.

By a degree argument, ξi = ri[y1, y2], for some ri ∈ R, whatever i ∈ I, so the
theorems apply with J ′ = {1} and J ′′ = {2}. For I = {1} or I = {1, 2}, the
computations are quite feasible. Since the contribution of the generators with
indices i for which ri = 0 is obvious, assume all ri 6= 0.
Thus, for I = {1}, FH(L(x′1, y1, y2), d) = L(y2) ⊕ L(y1), as Lie algebras, and

UFH(L(x′1, y1, y2), d), FH(T (x′1, y1, y2), d) and FH(ΩX ;R) may all appropri-
ately be identified to T (y2)⊗ T (y1).
For I = {1, 2}, let x = r′2x

′

1 − r′1x
′

2, where r′i = ri/r, r being the
greatest common divisor of r1 and r2. Then FH(L(x′1, x

′

2, y1, y2), d) =

L(y2, ad
k(y1)(x))k=0,1,2,... ⊕ L(y1), as R-modules, but not as Lie algebras,

for [y1, ad
k(y1)(x)] = adk+1(y1)(x); as for UFH(L(x′1, x

′

2, y1, y2), d),
FH(T (x′1, x

′

2, y1, y2), d) and FH(ΩX ;R), they may now all appropriately be iden-

tified to T (y2, ad
k(y1)(x))k=0,1,2,... ⊗ T (y1). �
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The next example is a generalization of the previous one.

Example 4. Let again I be finite and J = {1, 2}, and now set all mi =
n1p + n2, with n2 > n1p and integer p ≥ 1. Thus, X is the cofiber of a map
∨i∈ISn1p+n2+1 → Sn1+1 ∨Sn2+1, ξi = ri ad

p(y1)(y2), for some ri ∈ R, whatever
i ∈ I, so the theorems apply again with J ′ = {1} and J ′′ = {2}. Once more,
the cases I = {1} and I = {1, 2} are fairly tractable. As before, the indices i for
which ri = 0 may be left aside, and all ri assumed non-zero.
Thus, for I = {1}, UFH(L(x′1, y1, y2), d), FH(T (x′1, y1, y2), d) and

FH(ΩX ;R) may all appropriately be identified to

T (adk(y1)(y2))k=0,... ,p−1 ⊗ T (y1);

and for I = {1, 2}, UFH(L(x′1, x
′

2, y1, y2), d), FH(T (x′1, x
′

2, y1, y2), d) and
FH(ΩX ;R) may appropriately be identified to

T ((adk(y1)(y2))k=0,... ,p−1, (ad
k(y1)(x))k=0,1,2,...)⊗ T (y1),

where, as before, x = r′2x
′

1− r′1x
′

2, r
′

i = ri/r, r being the greatest common divisor
of r1 and r2. �

Our last example deals with somewhat richer wedges of spheres.

Example 5. Given integers k, q ≥ 2, let I be finite, with mi ∈ {4k, 6k}, let
J = {1, . . . , q}, with n1 = 2k and nj = 2k+1, j = 2, . . . , q, and note, by a simple
degree argument, that the ξi must lie in the R-span of the commutators [yj , y1]
and [yj1 , [yj2, y1]], with j, j1 and j2 in {2, . . . , q}. Our theorems now clearly apply

with J ′ = {2, . . . , q} and J ′′ = {1}. �
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