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Infinitesimal characterization

of almost Hermitian homogeneous spaces

Sergio Console, Lorenzo Nicolodi

Abstract. In this note it is shown that almost Hermitian locally homogeneous manifolds
are determined, up to local isometries, by an integer kH , the covariant derivatives of
the curvature tensor up to order kH + 2 and the covariant derivatives of the complex
structure up to the second order calculated at some point. An example of a Hermitian
locally homogeneous manifold which is not locally isometric to any Hermitian globally
homogeneous manifold is given.
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Introduction

The curvature tensor and its covariant derivatives are a complete set of local in-
variants for analytic Riemannian metrics. Indeed, if (M, g) is an analytic manifold
and (U, x1, . . . , xn) a normal coordinate system centered at p ∈ M , the coefficients

of the Taylor series expansion around p of gij = g( ∂
∂xi

, ∂
∂xj
) are polynomials in

the components of the curvature tensor Rp and its covariant derivatives DsRp,
s = 0, 1, . . . , with respect to the Levi Civita connection. As a consequence, if
(M, g) and (M ′, g′) are (analytic) Riemannian manifolds and if for p ∈ M and
q ∈ M ′ there is a linear isometry F : TpM → TqM

′ so that

(0.1) F ∗
pD

′sR′
q = DsRp

for any s = 0, 1 . . . , then f := expq ◦F ◦ exp−1p is a local isometry such that

f(p) = q and f∗|p = F .

For instance, if (M, g) is locally homogeneous, (0.1) holds for any p, q ∈ M
(=M ′). Hence one can read local homogeneity by means of the curvature tensor
together with all its covariant derivatives.
A stronger result holds. In fact, I.M. Singer [Si] (see also [NT]) proved that

there is an integer kM (the Singer invariant), with 0 ≤ kM ≤
n(n−1)
2 − 1 (n =

dimM) such that, if for any p, q ∈ M there is a linear isometry F : TpM → TqM
for which (0.1) holds for 0 ≤ s ≤ kM + 1, then M is locally homogeneous. From
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this result one can prove that a locally homogeneous space is completely deter-
mined by the curvature and its covariant derivatives up to some order at a fixed
point, and that one can algebraically recapture the Lie algebra of infinitesimal
isometries from the infinitesimal data {DsRp}s≤kM+2 (see [NT] for a proof).

This note deals with the almost Hermitian case. In Section 3 we prove the
following.

Main Theorem. Let (V, 〈 , 〉, J) be a Hermitian vector space and kH a positive

integer. Let J0 = J, J1, J2, R0, R1, . . . , RkH+2 be tensors of types (1,1), (1,2),
(1,3), (0,4), . . . ,(0, kH + 6) for which the identities (3.1), . . . (3.7), (3.9), (3.10)
(see Section 3 below) hold.
Then there exists an almost Hermitian locally homogeneous space (M, g, J) with

(Hermitian) Singer invariant kH such that 〈 , 〉, J0, J1, J2, R0, R1, . . . , RkH+2

coincide, respectively with gp, Jp, DJp, D
2Jp, Rp, . . . , D

kH+2Rp at a point p,
where V is identified with TpM .

We now briefly describe the methods we use. In analogy with the Riemann-
ian case (cf. [Tr] for a review on the subject), one can associate an algebraic
object to any almost Hermitian locally homogeneous manifold, the almost Her-
mitian infinitesimal model (Definition 1.1). This object brings together the al-
gebraic identities (see (1.1) . . . (1.8)) satisfied by a curvature tensor and an al-
most complex structure at one point. Conversely, to any almost Hermitian in-
finitesimal model corresponds a uniquely defined (up to local isometries) almost
Hermitian locally homogeneous manifold. The proof of the main Theorem is ob-
tained by constructing an almost Hermitian infinitesimal model from the data
(〈 , 〉, J0, J1, J2, R0, R1, . . . , RkH+2).
Almost Hermitian globally homogeneous manifolds are obtained from the reg-

ular almost Hermitian infinitesimal models (see Definition 1.2). In Section 4,
following a similar construction as in [Tr] and [K2] we give an example of a Her-
mitian manifold of (complex) dimension 7 which is not locally isometric to any
Hermitian globally homogeneous manifold.
We thank O. Kowalski and L. Vanhecke for useful discussions.

1. Preliminaries

A. Almost Hermitian homogeneous manifolds. An almost Hermitian mani-
fold (M, g, J) is Hermitian globally homogeneous if for any p, q ∈ M there is a
Hermitian isometry f (i.e. a diffeomorphism which is compatible both with the
almost complex structure and the Hermitian metric) such that f(p) = q. M is
almost Hermitian locally homogeneous if f is a local isometry. In the global case,
there is a Lie group G which acts transitively and effectively onM . Let K be the
isotropy subgroup at p ∈ M . Then M = G/K. Moreover (if g is the Lie algebra
of G and k the Lie algebra of K) there is a reductive decomposition g = k ⊕ m
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with

[k, m] ⊆ m,

m ≃ TpM (Jm = m),

adkJ = Jadk.

Theorem 1 [Se]. (M, g, J) is almost Hermitian locally homogeneous if and only
if there is a connection ∇ on M such that

(1) ∇g = 0 (i.e., ∇ is metric),
(2) ∇T = 0 (where T is the torsion of ∇),
(3) ∇K = 0 (where K is the curvature of ∇),
(4) ∇J = 0.

∇ is called a canonical connection. The difference tensor S := ∇−D is called an
almost Hermitian homogeneous structure.
Moreover, if M is complete, simply connected and admits an almost Hermitian

homogeneous structure, it is almost Hermitian globally homogeneous.

Note that a homogeneous structure depends on the reductive decomposition
of the homogeneous manifold (M, g). Theorem 1 was proved by Sekigawa [Se]
in the simply connected case, while the local version follows by a more general
result of Kiričenko [Ki]. We will call (1), . . . , (4) the Hermitian Ambrose-Singer
equations. (1), (2) and (3) are the Ambrose-Singer equations, which hold for real
locally homogeneous spaces. For the real Riemannian version of the theorem we
refer to [TV].

Remark. The torsion T of ∇ and the homogeneous structure S are related by

TXY = SY X − SXY.

The curvature tensor K of ∇ and the Riemannian curvature tensor R are related
by

KXY = RXY + [SX , SY ] + STXY .

For (T, K, J) := (Tp, Kp, Jp), p ∈ M the following identities hold:

TXY = −TY X,(1.1)

KXY Z = −KY XZ,(1.2)

g(KXY Z, W ) + g(Z, KXY W ) = 0,(1.3)

KXY · T = 0,(1.4)

KXY · K = 0,(1.5)

KXY · J = 0,(1.6)

SXY Z(KXY Z + TTXY Z) = 0 (first Bianchi identity),(1.7)

SX,Y,ZKTXY Z = 0 (second Bianchi identity).(1.8)
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(1.1), (1.2), (1.3) are the usual algebraic identities satisfied by the curvature and
torsion tensors of a metric connection. (1.7) and (1.8) follow from the Bianchi
identities taking into account the Sekigawa-Ambrose-Singer equations. Finally,
as already indicated above, (1.4), (1.5), (1.6) are integrability conditions of the
Sekigawa-Ambrose-Singer equations and follow from (2), (3), (4) in Theorem 1.

B. Almost Hermitian infinitesimal models. Let (V, 〈 , 〉, J) be a Hermitian
vector space and consider tensors

T : V → EndV,

K : V × V → EndV.

Definition 1.1. A triple (T, K, J) is an almost Hermitian infinitesimal model on
V if (1.1), . . . , (1.8) hold.

If (T, K, J) and (T ′, K ′, J ′) are almost Hermitian infinitesimal models on vector
spaces V and V ′, an isomorphism between them is a linear Hermitian isometry
preserving the tensors T, .., J ′.

It follows from the above discussion that one can associate with any almost
Hermitian locally homogeneous space an almost Hermitian infinitesimal model.
Conversely, Y. Watanabe and F. Tricerri [TW] proved the following

Theorem 2. Let (T, K, J) be an almost Hermitian infinitesimal model on V .
Then there exists an almost Hermitian locally homogeneous manifold (M, g, J)
and a canonical connection ∇ on M , so that (Tp, Kp, Jp) ∼= (T, , K, J), for any
p ∈ M . In particular, (M, g, J) is determined uniquely up to local Hermitian
isometries.

So far our considerations have been local. On the other hand, it is natural to
look for conditions on an almost Hermitian infinitesimal model (T, K, J) in order
that the associated almost Hermitian locally homogeneous manifold (M, g, J) is
locally isometric to an almost Hermitian globally homogeneous manifold. To this
aim we adapt a construction due to Nomizu [No].

C. The Nomizu construction. Let (T, K, J) be an almost Hermitian infini-
tesimal model on V . Let h be the subalgebra of so(V ) given by

h := {A ∈ so(V ) | A · T = A · K = A · J = 0},

(note that, since A ·J = 0, h is a subalgebra of the Lie algebra u(V ) of the unitary
group). Let g := h ⊕ V with brackets defined by

[X, Y ] = −TXY +KXY ,(1.9)

[A, X ] = A(X),(1.10)

[A, B] = AB − BA,(1.11)
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where X, Y ∈ V and A, B ∈ h. Remark that adhJ = Jadh as a consequence of
the definition of h.
Observe that, by (1.4), (1.5) and (1.6), KXY ∈ h for any X, Y ∈ V . In

particular, (1.5) implies that the operators KXY span a subalgebra h′ of h. One
can repeat the construction above with h′ in the place of h. The Lie algebra
g′ = h′ ⊕ V so determined is called the transvection algebra ([K1]).
Let G (G′) be the (connected) simply connected Lie group whose Lie algebra

is g (g′) and H (H ′) its connected Lie subgroup with Lie algebra h (h′).

Definition 1.2. An almost Hermitian infinitesimal model is regular if H is closed
in G.

If (T, K, J) is regular, then M̃ := G/H is an almost Hermitian (globally) ho-
mogeneous manifold. IfM is the almost Hermitian locally homogeneous manifold
constructed starting from (T, K, J) according to Theorem 2, one can show that

M and M̃ are locally isometric (the argument is similar to the real case, cf. [Tr]).
Note that, if we replace the Lie algebra g with the transvection algebra g′, the

construction above leads to the same almost Hermitian homogeneous manifold M̃
represented as coset space by G′/H ′ (cf. [K1]).
Conversely, if (N, g, J) is locally isometric to an almost Hermitian globally

homogeneous manifold, then, with the same arguments as in [Tr], one can show
that all infinitesimal models associated with it are regular. Moreover, one can
show that the transvection algebra of each infinitesimal model is regular, i.e. H ′

is closed in G′.
Thus, in order to produce an almost Hermitian locally homogeneous manifold

which cannot be locally isometric to any almost Hermitian globally homogeneous
manifold it is sufficient to construct an infinitesimal model whose transvection
algebra is not regular. This will be done in Section 4.

2. The Hermitian Singer invariant

Let (M, g, J) be an almost Hermitian manifold, and dimR M = 2n. For any
p ∈ M , s ≥ 0, let

(2.1) gH(p, s) := {A ∈ u(TpM) | A · Rp = A · DRp = · · · = A · DsRp = 0},

where R is the Riemannian curvature tensor and D the Levi Civita connection.
gH(p, s) is a subalgebra of u(TpM). Note that gH(p, s) ⊇ gH(p, s + 1). Clearly,
there exists a smallest integer s, denoted by kH (p), such that

(2.2) gH(p, kH (p)) = gH(p, kH (p) + 1).

Definition 2.1. (M, g, J) is said to be almost Hermitian infinitesimally homo-
geneous if for any p, q ∈ M there is a linear Hermitian isometry F : TpM → TqM

so that F ∗
p DiRq = DiRp for i = 0, . . . , kH (p) + 1.

If M is almost Hermitian infinitesimally homogeneous, then the gH(p, i) and
gH(q, i) are conjugate for i = 0, . . . , kH(p) + 1. This implies that kH(p) does not
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depend on p. Hence, we set kH := kH (p) and, in analogy with [NT], we call kH

the Hermitian Singer invariant.

If (M, g, J) is almost Hermitian infinitesimally homogeneous one can show that
M is almost Hermitian locally homogeneous. The idea is to construct a canonical
connection ∇ (or equivalently a homogeneous structure S, cf. [NT] and [KT])
and then use Theorem 1. As we will see in the next section, this construction is
purely algebraic. As a matter of fact, Sp (p ∈ M) can be obtained from Rp, a
finite number of its covariant derivatives and finitely many covariant derivatives
of Jp.

3. Infinitesimal data

Let (M, g, J) be an almost Hermitian locally homogeneous space and p ∈ M . In
this section we use the Riemannian curvature tensor RXY ZW = g(RXY Z, W ).
Set

V := TpM, J0 := Jp, J
1 := DJp, . . . . R0 := Rp, R

1 := DRp, . . . , R
s := DsRp.

The following identities hold for any almost Hermitian manifold

R0XY ZW = −R0Y XZW = R0ZWXY ,(3.1)

SXY ZR0XY ZW = 0 (first Bianchi identity),(3.2)

R1XY ZV W = −R1XZY V W = R1XV WY Z ,(3.3)

SY ZV R1XY ZV W = 0,(3.4)

SXY ZR1XY ZV W = 0 (second Bianchi identity),(3.5)

R0XY · Rs = Rs+2
Y X.. − Rs+2

XY.. (Ricci identities for R),(3.6)

R0XY · J0 = J2(Y, X, . . . )− J2(X, Y, . . . ) (Ricci identities for J).(3.7)

If, in addition, M is almost Hermitian infinitesimally homogeneous and ∇ is a
canonical connection, then

(3.8)

∇XDsR = 0, 0 ≤ s ≤ kH + 1 or equivalently iXRs+1 = SX · Rs,

∇XJ = 0, or equivalently iXJ1 = SX · J0,

∇XDJ = 0, or equivalently iXJ2 = SX · J1,

where iX denotes the contraction with X . Note that the formulas on the right
hand side of (3.8) have the advantage of being tensorial. Hence they depend only
on the values of DtR and DiJ at p. If we define the following maps

µs : so(V )→ (V
∗ ⊗ V )⊕ (

2
⊗V ∗ ⊗ V )⊕

(
s∑

α=0

s+4
⊗ V ∗

)

A 7→ (A · J0, A · J1, A · R0, . . . , A · Rs),
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νt : V → (
2
⊗V ∗ ⊗ V )⊕ (

3
⊗V ∗ ⊗ V )⊕

(
t∑

α=0

t+4
⊗ V ∗

)

A 7→ (iXJ1, iXJ2, iXR1, . . . , iXRt+1),

then (3.8) is equivalent to

(3.9) νkH+1(V ) ⊆ µkH+1(so(V )).

Note that kerµs = gH(p, s) ∩ ker{A 7→ A · J1}. Then gH(p, kH) = gH(p, kH + 1)
implies

(3.10) kerµkH+1 = kerµkH
.

Proof of the main Theorem: By (3.9), for any X , there exists an A(X) ∈

so(V ) so that iXJh+1 = A(X) · Jh (h = 1, 2), iXRs+1 = A(X) · Rs (s =

0, . . . , kH + 2). Set h := kerµkH+1. Then one can split so(V ) as h ⊕ h⊥ (with
respect to the inner product 〈 , 〉). Thus

A(X) = A1(X) +A2(X), A1(X) ∈ h, A2(X) ∈ h⊥.

We can now set SX := A2(X) and define

TXY := SY X − SXY,

KXY := R0XY + [SX , SY ] + STXY .

Then one can show that (T, K, J) is an almost Hermitian infinitesimal model.
This can be done exactly as in [NT], except for the proof of (1.6). For the latter,
using (3.7) and (3.8), we have

R0XY J0(Z) = J2(Y, X, Z)− J2(X, Y, Z)

= iY J2(X, Z)− iXJ2(Y, Z) = SY J1(X, Z)− SXJ1(Y, Z)

= SY iXJ1(Z)− J1(SY X, Z)− SX iY J1(Z) + J1(SXY, Z)

= SY SXJ0(Z)− SSY XJ0(Z)− SXSY J0(Z) + SSXY J0(Z)

= −([SX , SY ] + STXY )J
0(Z).

It suffices to use Theorem 2 to finish the proof. �

4. An example of non-regular Hermitian infinitesimal model

A. General construction ([Tr]). Let G be a simply connected Lie group and
H a connected Lie subgroup of G for which one has a reductive decomposition

(4.1) g = h ⊕ V, [h, V ] ⊆ V,
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where g, h is the Lie algebra of G, H , respectively. Suppose V is endowed with a
complex structure J and a Ad(H)-invariant Hermitian inner product < , >.
Let ad : h → adh, X 7→ adX be an isomorphism and

(4.2) adhJ = Jadh.

Define

TXY = [X, Y ]V ,(4.3)

KXY = ad[X,Y ]h .(4.4)

By (4.2), (T, K, J) is an almost Hermitian infinitesimal model. Moreover its
transvection algebra is isomorphic to g and therefore (T, K, J) is non-regular if
H is not closed in G.

B. An example. Let G be the simply connected Lie group SU(4) and H its one
parameter subgroup generated by




eit

e−it

eiat

e−iat


 ,

with a ∈ R − Q. The Lie algebra h of H is generated by

v =




i
−i

ai
−ai


 .

Let t be the Lie subalgebra of the Lie algebra of G, g, given by the diagonal
matrices with zero trace. One can identify t with a hyperplane of R4 in a natural
way. Let v⊥ be the orthogonal complement of v in t with respect to the euclidean
metric. Since dimR v⊥ = 2, given an orthonormal basis (e1, e2) of v⊥, v⊥ is

endowed with the complex structure J1 :
{

e1 7→ e2
e2 7→ −e1

. Note that the euclidean

inner product on v⊥ (inherited by R4) is Hermitian and Ad(H)-invariant (the

latter is trivial, since Ad(H) is the identity on v⊥). Let W be the subspace of
g of the matrices of g having all entries on the diagonal equal to zero. Note
that W is the tangent space (at I) of the flag manifold SU(4)/T , where T is the
maximal torus. Since SU(4)/T is a Hermitian homogeneous manifold, there is a
natural complex structure J2 on W given by multiplication by i for the elements
above the diagonal and by −i for the ones below the diagonal. Moreover any
negative multiple of the Killing form of su(4) is a Hermitian (with respect to J2)
Ad(H)-invariant inner product on W .
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Let V := v⊥⊕W be the Hermitian space, endowed with the complex structure
J := J1 + J2. Then

g = h ⊕ V

is a reductive decomposition, like in the general construction above, since adhJ =

Jadh (on the v⊥-part this is trivial, while on W it follows from the fact that
SU(4)/T is a Hermitian homogeneous manifold).
If one defines T and K by means of (4.3) and (4.4) one gets an almost Hermit-

ian infinitesimal model (T, K, J). Since H is not closed in G, such a model is not
regular. Moreover, one can verify by direct computation that the Nijenhuis tensor
N vanishes, hence the locally homogeneous almost Hermitian manifold with in-
finitesimal model (T, K, J) has integrable complex structure (i.e. it is Hermitian).
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