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1. Introduction

First of all we recall the theory of infinitesimally homogeneous spaces by
I.M. Singer [14]. Let (M, 〈, 〉) be a Riemannian manifold of dimension n. We
denote by R and ∇iR, the curvature tensor and its i-th covariant derivative
of M . Singer introduced the following condition:

P (l): for every p, q ∈ M there exists a linear isometry φ : TpM → TqM such
that

φ∗(∇iR)q = (∇iR)p i = 0, 1, . . . , l.

A Riemannian manifold which satisfies P (0) is said to be curvature homogeneous
and if P (l) holds, the manifold is said to be curvature homogeneous up to order
l. We denote by so(TpM) the Lie algebra of the endomorphisms of TpM which
are skew-symmetric with respect to 〈, 〉. For a non-negative integer l, we define a
Lie subalgebra gl(p) of so(TpM) by

gl(p) = {A ∈ so(TpM) | A · (∇iR)p = 0, i = 0, 1, . . . , l },

where A acts as a derivation on the tensor algebra on TpM . Since gl(p) ⊇ gl+1(p),
there exists a first integer k(p) such that gk(p)(p) = gk(p)+1(p). Namely, we have

so(TpM) ⊇ g0(p) ) g1(p) ) g2(p) ) · · · ) gk(p)(p) = gk(p)+1(p).

Following Singer, we say that (M, 〈, 〉) is infinitesimally homogeneous ifM satisfies
P (k(p) + 1) for some point p ∈ M . If M satisfies P (l), then the linear isometry φ
induces a Lie algebra isomorphism of gi(p) to gi(q) for i = 0, 1, . . . , l. Therefore
if M is infinitesimally homogeneous, k(q) does not depend on q ∈ M . We put



724 Y.Kiyota, K.Tsukada

kM = k(p) and call it the Singer invariant of an infinitesimally homogeneous
space M .
If M is locally homogeneous, then evidently M satisfies P (l) for any l and in

particularM is infinitesimally homogeneous. Singer proved the converse ([14] and
see also L. Nicolodi and F. Tricerri [12]).

Theorem. A connected infinitesimally homogeneous spaceM is locally homoge-

neous. Moreover it is completely determined by its curvature tensor and covariant

derivatives up to order kM + 1.

The theorem above suggests that the Singer invariant will play an important
role in the differential geometry of locally homogeneous spaces. However, at our
knowledge, there are only a few homogeneous spaces whose Singer invariants are
known. So we investigate the Singer invariants of low dimensional homogeneous
spaces.
For a three-dimensional homogeneous space the longest sequence which may

occur is

g0 = so(2) ) g1 = {0}.

Therefore the Singer invariant of a three-dimensional homogeneous space is at
most 1. F.G. Lastaria ([10], [11]) has computed g0 and g1 for three-dimensional
homogeneous spaces and determined their Singer invariants (see also [6]).
In the case of dimension 4, it is known that every homogeneous space is either

locally symmetric or locally isometric to a Lie group with a left invariant metric
([1], [4]). For the latter case it seems to be difficult to compute gi (i = 0, 1, . . . )
and to determine its Singer invariant by means of them. So, we will proceed in
another way. Let R be the space of algebraic curvature tensors on R4. As is well
known, O(4) acts on R and dimR = 20. Let h be a Lie subalgebra of so(4) which

corresponds to a closed subgroup of O(4). We denote by Rh the subspace of R
which consists of curvature tensors invariant by h. We say that the curvature
tensor of a four-dimensional homogeneous space M belongs to Rh if there exists
an orthonormal frame u at p ∈ M such that u∗Rp ∈ Rh. Now our way is the
following:

(1) Classify the h which are isotropy subalgebras of the action of so(4) on R.
(2) With respect to each h in the above, classify the homogeneous spaces whose

curvature tensors belong to Rh.

(3) Compute the Singer invariants of the homogeneous spaces obtained in (2).

In this paper we cannot completely do the approach above. But we show that if
dim h ≥ 2, a homogeneous space whose curvature tensor belongs to Rh is locally
symmetric or locally homothetic to SL(2, R)⋉ R2/SO(2) with the SL(2, R)⋉ R2

invariant metric. Moreover, the Singer invariant of SL(2, R)⋉R2/SO(2) is 1. By
these results we obtain the following:
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Main result. The Singer invariant of a four-dimensional homogeneous space is

at most 1.

As for higher dimensional cases, it is worthwhile to remark the interesting
examples constructed by O. Kowalski, F. Tricerri, and L. Vanhecke ([9]). They
constructed a family of metrics on Rn+1 which have the following properties:

(i) They are semi-symmetric (i.e., they satisfy R(x, y) · R = 0).
(ii) At every point p of Rn+1,

g0(p) = so(2)⊕ so(n − 1),
gl(p) = so(n − 1− l) for 1 ≤ l ≤ n − 3 ,

gn−2(p) = 0.
Especially, their Singer invariants are equal to n − 2.
(iii) They are not locally homogeneous.

Although they are not locally homogeneous, we think that they will give many
suggestions when we consider the Singer invariants.
The content of the paper is organized as follows. In Section 2, we give a

classification of h (Proposition 2.1) and consider the cases of h = u(2), su(2),
and so(3). In Section 3, we compute the curvature tensor and its covariant de-
rivative of SL(2, R) ⋉ R2/SO(2) with the SL(2, R) ⋉ R2 invariant metric and
show that its Singer invariant is 1 (Corollary 3.2). In Section 4, we investigate
the four-dimensional homogeneous spaces whose curvature tensors belong to Rt,
t ∼= so(2) ⊕ so(2) and prove that they are locally symmetric or locally homo-
thetic to SL(2, R)⋉R2/SO(2) (Theorem 4.1). We remark that our main theorem
is closely related to a result of K. Sekigawa, H. Suga, and L. Vanhecke ([13])
which has shown that a four-dimensional connected Riemannian manifold which
is curvature homogeneous up to order one is locally homogeneous.
Finally we would like to thank Professor O. Kowalski and Professor L. Vanhecke

for their valuable comments.

2. Classification of h

In order to state our proposition, we prepare some notations. Let {e1, e2, e3, e4}
be a standard basis of R4. We define a linear transformation J of R4 by Je1 = e2,
Je2 = −e1, Je3 = e4, Je4 = −e3. We define the Lie subalgebras u(2) and su(2)
of so(4) by

u(2) = {X ∈ so(4) | XJ = JX} ,

su(2) = {X ∈ u(2) | trace(XJ) = 0} .

We denote by so(3) the subalgebra of so(4) consisting of all matrices of the forms:






0
X 0

0
0 0 0 0






(X : skew-symmetric of degree 3 ).
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We define a maximal Abelian subalgebra t and 1-dimensional subalgebras t1,1,
t1,0 of so(4) as follows:

t =

















0 −λ 0 0
λ 0 0 0
0 0 0 −µ
0 0 µ 0






| λ, µ ∈ R











,

t1,1 = {λJ | λ ∈ R} ,

t1,0 =

















0 −λ 0 0
λ 0 0 0
0 0 0 0
0 0 0 0






| λ ∈ R











.

Without difficulty we can obtain the following proposition.

Proposition 2.1. An isotropy subalgebra of the action of so(4) onR is conjugate
under an adjoint transformation by an element of O(4) to one of the following h:

h dimRh

so(4) 1
u(2) 2
su(2) 6
so(3) 2

t 4
t1,1 10
t1,0 6
{0} 20

As the next step, we shall classify the four-dimensional homogeneous spaces
whose curvature tensors belong to Rh for each h in the proposition above. When
h = so(4), evidently they have constant sectional curvature. In this section, we
consider the cases of h = u(2), su(2) or so(3). In Section 4, we shall treat with
the case h = t. However we could not give answers for the remaining cases.
The cases of h = u(2) or su(2). In these cases the homogeneous spaces whose

curvature tensors belong to Rh are Einstein spaces. G.R. Jensen ([5]) classified
the four-dimensional homogeneous Einstein spaces. In particular, they are all
locally symmetric.
The case of h = so(3). We apply the following theorem of H. Takagi to this

case.

Theorem 2.2 (H. Takagi [15]). Let M be a curvature homogeneous conformally

flat Riemannian manifold with dimM ≥ 3. Then M is isometric to one of the

following manifolds:

(1) A Riemannian manifold of constant curvature.
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(2) A Riemannian manifold which is locally a product of a Riemannian mani-
fold of constant curvature c (6= 0) and a Riemannian manifold of constant
curvature −c.

(3) A Riemannian manifold which is locally a product of a Riemannian ma-
nifold of constant curvature c (6= 0) and a 1-dimensional one.

In particular, M is locally symmetric.

His original statement is slightly different. He assumed the homogeneity of M .
However as it was pointed out in [2], [3] and [7], Takagi’s proof used only the
curvature homogeneity. Let R be the space of algebraic curvature tensors on Rn

and so(n − 1) the subalgebra of so(n) consisting of all matrices of the form:








0

X
...
0

0 · · · 0 0









(X : skew-symmetric of degree n − 1 ).

We denote by Rso(n−1) the subspace of R consisting of so(n − 1)-invariant cur-
vature tensors. We put en = (0, · · · , 0, 1)t in Rn. We denote by V a subspace of

Rn whose vectors are orthogonal to en. If n ≥ 4, R ∈ Rso(n−1) has the following
form: for x, y, z ∈ V

R(x, y)z = α{〈y, z〉x − 〈x, z〉y},
R(x, en)y = β〈x, y〉en,

R(x, en)en = −βx,

the others are zeros,

where α, β are some constants.
Therefore we see that the Weyl part of R vanishes. By Theorem 2.2, we have the
following.

Corollary 2.3. Let M be an n(≥ 4)-dimensional curvature homogeneous Rie-
mannian manifold whose curvature tensor belongs to Rso(n−1). Then M is a

Riemannian manifold of constant curvature or locally isometric to a product of a

Riemannian manifold of constant curvature c (6= 0) and a 1-dimensional one. In
particular, M is locally symmetric.

3. The curvature tensor of SL(2, R)⋉ R2/SO(2)

Let K = SL(2, R)⋉ R2 be the semi-direct product of SL(2, R) and R2 by the
usual representation of SL(2, R) on R2. The element of SL(2, R)⋉R2 is expressed
by (a, x), a ∈ SL(2, R), x ∈ R2. H = SO(2) is naturally viewed as a subgroup
of SL(2, R) and hence of SL(2, R) ⋉ R2. Namely, H = {(a, 0) | a ∈ SO(2)}.
In this section, we compute the curvature tensor and its covariant derivative of
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the homogeneous space M = K/H = SL(2, R)⋉ R2/SO(2) with SL(2, R)⋉ R2

invariant Riemannian metric and show that its Singer invariant is 1.
Let k = sl(2, R) + R2 and h = so(2) be the Lie algebra and its Lie subalgebra

corresponding to K and H respectively. The element of k is expressed by (A, x),
A ∈ sl(2, R), x ∈ R2. Then we have

h =

{ ((

0 −λ
λ 0

)

, 0

)

∣

∣ λ ∈ R

}

.

We define elements e1, e2, e3, and e4 in k as follows:

e1 =

(

0,

(

1
0

))

, e2 =

(

0,

(

0
1

))

,

e3 =

(

1

2

(

0 1
1 0

)

, 0

)

, e4 =

(

1

2

(

1 0
0 −1

)

, 0

)

.

We denote by m the subspace of k spanned by e1, e2, e3 and e4. Then m is Ad(H)

invariant in k. For J0 =
((

0 −1
1 0

)

, 0
)

∈ h, the matrix of ad J0 with respect to

the above basis {e1, e2, e3, e4} in m is given by






0 −1 0 0
1 0 0 0
0 0 0 2
0 0 −2 0






.

We define an inner product 〈, 〉 on m such that {e1, e2, e3, e4} is an orthonormal
basis. Because of the form of ad J0 in m, the inner product 〈, 〉 is invariant under
Ad(H). We induce the K-invariant Riemannian metric on M corresponding to
this inner product 〈, 〉. For the Riemannian metric obtained as above, we use the
same symbol 〈, 〉. We compute the curvature tensor and its covariant derivative of
(M, 〈, 〉). Let {θ1, θ2, θ3, θ4} be a dual basis of {e1, e2, e3, e4} in m. θi ∧ θj · θk ∧ θl

denotes the symmetric product of the 2-forms θi ∧ θj and θk ∧ θl defined by

θi ∧ θj · θk ∧ θl =
1

2
{θi ∧ θj ⊗ θk ∧ θl + θk ∧ θl ⊗ θi ∧ θj}.

Proposition 3.1. On the Riemannian manifold (M, 〈, 〉) the curvature tensor R,
the Ricci tensor ρ and the covariant derivative ∇R of the curvature tensor are
expressed at the origin as follows:

R =
1

4
{−2θ1 ∧ θ2 · θ1 ∧ θ2 + 4θ3 ∧ θ4 · θ3 ∧ θ4

− 4θ1 ∧ θ2 · θ3 ∧ θ4 − 2θ1 ∧ θ3 · θ2 ∧ θ4 + 2θ1 ∧ θ4 · θ2 ∧ θ3

+ θ1 ∧ θ3 · θ1 ∧ θ3 + θ1 ∧ θ4 · θ1 ∧ θ4 + θ2 ∧ θ3 · θ2 ∧ θ3 + θ2 ∧ θ4 · θ2 ∧ θ4},

ρ = −3
2
{θ3 ⊗ θ3 + θ4 ⊗ θ4},

∇R =
3

2
{−θ1 ⊗ θ1 ∧ θ2 · (θ1 ∧ θ3 − θ2 ∧ θ4) + θ2 ⊗ θ1 ∧ θ2 · (θ2 ∧ θ3 + θ1 ∧ θ4)}.
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We denote by so(m) the Lie algebra of the endomorphisms of m which are
skew-symmetric with respect to 〈, 〉. We express the elements of so(m) as the
matrices with respect to the basis {e1, e2, e3, e4} and identify so(m) with so(4).
From Proposition 3.1, we immediately obtain the following.
Corollary 3.2. Let g0 and g1 be the Lie subalgebras of so(m) defined in § 1
for the homogeneous Riemannian manifold (M, 〈, 〉). Then we have g0 = t and

g1 = ad h, where t is a maximal Abelian subalgebra of so(4) defined in § 2. In
particular, the Singer invariant of (M, 〈, 〉) is 1.
Remark 3.3. It is easy to show that a Riemannian manifold M = K/H =
SL(2, R) ⋉ R2/SO(2) with a K-invariant Riemannian metric is homothetic to
(M, 〈, 〉) with the Riemannian metric defined as above. Therefore the Singer
invariant of the homogeneous space K/H with any K-invariant metric is 1.
Remark 3.4. We put E1, E2, E3, E4 in the Lie algebra k = sl(2, R) + R2 as

Ei = ei (i = 1, 2, 4), E3 = e3 − 12J0 =
((

0 1
0 0

)

, 0
)

. Then we have

[E1, E2] = 0, [E1, E3] = 0, [E1, E4] = −1
2
E1

[E2, E3] = −E1, [E2, E4] =
1

2
E2, [E3, E4] = −E3.

Therefore the subspace g spanned by E1, E2, E3, and E4 is a Lie subalgebra of k.
We denote by G the connected Lie subgroup of K corresponding to g. Then G
acts simply transitively onM . Moreover, the Riemannian manifoldM is isometric
to the Lie group G with the left invariant metric such that E1, E2, E3, and E4
are orthonormal.

4. Four-dimensional homogeneous spaces whose curvature tensors

belong to Rt

Let t be the maximal Abelian subalgebra of so(4) given in § 2 and Rt be the
subspace of R consisting of algebraic curvature tensors invariant by t.

Theorem 4.1. LetM be a four-dimensional homogeneous space whose curvature
tensor belongs to Rt. ThenM is either locally symmetric or locally homothetic to

SL(2, R)⋉ R2/SO(2) with the SL(2, R)⋉ R2 invariant Riemannian metric given

in § 3.
The purpose of this section is to prove the theorem above. We take curvature

tensors R1, R2, R3, R4 of the following form:
R1 = θ1 ∧ θ2 · θ1 ∧ θ2,

R2 = θ3 ∧ θ4 · θ3 ∧ θ4,

R3 = 2θ1 ∧ θ2 · θ3 ∧ θ4 + θ1 ∧ θ3 · θ2 ∧ θ4 − θ1 ∧ θ4 · θ2 ∧ θ3,

R4 = θ1 ∧ θ3 · θ1 ∧ θ3 + θ1 ∧ θ4 · θ1 ∧ θ4 + θ2 ∧ θ3 · θ2 ∧ θ3 + θ2 ∧ θ4 · θ2 ∧ θ4,

where {θ1, θ2, θ3, θ4} is a dual basis of the standard basis in R4. Then
{R1, R2, R3, R4} is a basis of Rt.
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Remark 4.2. Let Si (i = 1, 2) be elements of O(4) given by

S1 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






, S2 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1






.

Then Si(Rt) = Rt. Moreover, we have

S1(αR1 + βR2 + γR3 + δR4) = βR1 + αR2 + γR3 + δR4,

S2(αR1 + βR2 + γR3 + δR4) = αR1 + βR2 − γR3 + δR4.

For the subalgebra u(2) of so(4) given in § 2, we put u(2)′ = Ad(S2)u(2). Lie
subalgebras of so(4) which contain t are u(2), u(2)′ and so(4). The following is
easily seen.

Lemma 4.3. Let R = αR1 + βR2 + γR3 + δR4 be a curvature tensor of Rt.

Then we have

(i) R ∈ Ru(2) if and only if α = β = 32γ + δ,

(ii) R ∈ Ru(2)′ if and only if α = β = −32γ + δ,

(iii) R ∈ Rso(4) if and only if γ = 0, α = β = δ.

LetM be a four-dimensional homogeneous space. It is known thatM is locally
symmetric or locally isometric to a Lie group G with a left invariant Riemannian
metric 〈, 〉. To prove Theorem 4.1, it is sufficient to consider the latter case.
Let ei (i = 1, 2, 3, 4) be left invariant vector fields on a Lie group G such that
{e1, e2, e3, e4} is an orthonormal frame field. We assume that with respect to
this frame, the curvature tensor of (G, 〈, 〉) belongs to Rt and it has the form
R = αR1 + βR2 + γR3 + δR4. The Riemannian connection ∇ is described by

∇ei
ej =

4
∑

k=1

Γ k
ij ek (i, j = 1, 2, 3, 4),

where Γ k
ij are constants. For each i, Γi =

(

Γ k
ij

)

is a skew-symmetric matrix of

degree 4, that is, Γi ∈ so(4). The covariant derivative ∇R of the curvature tensor
is given by ∇ei

R = Γi ·R, where Γi acts as a derivation. From the second Bianchi
identity, it follows that

Si,j,k (Γi · R) (ej , ek, el, eu) = 0,

where S denotes the cyclic sum. This gives a system of linear equations for
unknown numbers Γ k

ij (cf. O. Kowalski and F. Prüfer [8]). From these, we im-

mediately obtain the following.
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Lemma 4.4. If
(

3
2γ

)2− (α− δ)2 6= 0, then we have Γ 3i1 = Γ 4i1 = Γ 3i2 = Γ 4i2 = 0
for i = 3, 4. If

(

3
2γ

)2 − (β − δ)2 6= 0, then we have Γ 3i1 = Γ 4i1 = Γ 3i2 = Γ 4i2 = 0
for i = 1, 2.

By Lemma 4.4, we shall consider the following cases:

(I)
(

3
2γ

)2 − (α − δ)2 6= 0,
(

3
2γ

)2 − (β − δ)2 6= 0,

(II)-(i)
(

3
2γ

)2 − (α − δ)2 6= 0, β − δ = 32γ 6= 0,
(II)-(ii) γ = 0, α 6= β = δ,

(III)-(i) α − δ = β − δ = 32γ 6= 0,
(III)-(ii) α − δ = −(β − δ) = 32γ 6= 0,
(III)-(iii) γ = 0, α = β = δ.

We note that it is sufficient to consider only the cases above owing to Re-

mark 4.2. In the cases of (III)-(i) and (III)-(iii) we have R ∈ Ru(2) andR ∈ Rso(4),
respectively by Lemma 4.3 and they have already been discussed in § 2. Therefore
it suffices to consider the cases (I), (II)-(i), (ii), and (III)-(ii).

Lemma 4.5. In the case (I), we have γ = δ = 0 and G is locally isometric to the
Riemannian product of two surfaces of constant negative curvatures −α and −β.

Proof of Lemma 4.5: By Lemma 4.4, we have Γ 3i1 = Γ
4

i1 = Γ
3

i2 = Γ
4

i2 = 0
for i = 1, 2, 3, 4. These imply that ∇R = 0. Let D1 (resp. D2) be the distribution
generated by the vector fields e1 and e2 (resp. e3 and e4). The identities above
mean that D1 and D2 are parallel distributions. In particular we have γ =
2〈R(e1, e3)e2, e4〉 = 0 and δ = 〈R(e1, e3)e1, e3〉 = 0. By the decomposition
theorem of de Rham, we see that G is locally isometric to the Riemannian product
of two surfaces of constant curvatures −α and −β. By further computations, it
follows that α and β are positive. �

Remark 4.6. Lemma 4.5 holds under the condition of the curvature homogene-
ity. Accordingly there does not exist a curvature homogeneous Riemannian ma-

nifold whose curvature tensor belongs to Rt and satisfies
(

3
2γ

)2 − (α − δ)2 6= 0,
(

3
2γ

)2 − (β − δ)2 6= 0 and γ 6= 0 or δ 6= 0. The curvature tensors which satisfy
these conditions are generic in Rt.

Lemma 4.7. The case (II)-(i) does not occur.

Lemma 4.8. In the case (II)-(ii), we have β = δ = 0 and G is locally isometric
to the Riemannian product of a flat surface and a surface of constant negative

curvature −α.

We omit the proofs of Lemmas 4.7 and 4.8, because they are similar to that of
the next lemma.
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Lemma 4.9. In the case (III)-(ii), G is locally homothetic to SL(2, R)⋉R2/SO(2)
with the SL(2, R)⋉ R2 invariant Riemannian metric given in § 3.
Proof of Lemma 4.9: The second Bianchi identity gives a system of linear
equations for unknown numbers Γ k

ij . Moreover, computing each component of

the curvature tensor, we obtain a system of quadratic equations for Γ k
ij . Solving

these equations, we have the following two cases:

Case 1 − Γ 311 = Γ 412 = Γ 421 = Γ 322 (which we denote by A),

Γ 411 = Γ
3
12 = Γ

3
21 = −Γ 422 (which we denote by B),

Γ 3i1 = Γ
4

i1 = Γ
3

i2 = Γ
4

i2 = 0 (i = 3, 4),

Γ 211 = Γ
2
21 = Γ

4
13 = Γ

4
23 = 0,

2Γ 231 + Γ
4
33 = 0, 2Γ 241 + Γ

4
43 = 0,

− 1
2
α =

1

4
β = −1

2
γ = δ =

(

Γ 231

)2
+

(

Γ 241

)2
= A2 +B2 > 0,

Case 2 Γ 331 = Γ
4
32 = −Γ 441 = Γ 342 (which we denote by C),

Γ 431 = −Γ 332 = Γ 341 = Γ 442 (which we denote by D),

Γ 3i1 = Γ
4

i1 = Γ
3

i2 = Γ
4

i2 = 0 (i = 1, 2),

Γ 231 = Γ
2
41 = Γ

4
33 = Γ

4
43 = 0,

2Γ 413 − Γ 211 = 0, 2Γ 423 − Γ 221 = 0,
1

4
α = −1

2
β =

1

2
γ = δ =

(

Γ 413

)2
+

(

Γ 423

)2
= C2 +D2 > 0.

For Case 1, the bracket operations [, ] have the form:

[e1, e2] = 0,

[e1, e3] = Ae1 −
(

B + Γ 231

)

e2,

[e1, e4] = −Be1 −
(

A+ Γ 241

)

e2,

[e2, e3] =
(

−B + Γ 231

)

e1 − Ae2,

[e2, e4] =
(

−A+ Γ 241

)

e1 +Be2,

[e3, e4] = Γ
3
34e3 − Γ 443e4.

By a suitable change of an orthonormal frame field {e1, e2, e3, e4}, we have

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = −te1,

[e2, e3] = −2te1, [e2, e4] = te2, [e3, e4] = −2te3,
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where t =
√

δ > 0.

Noticing Remark 3.4, we see that G is locally homothetic to SL(2, R)⋉R2/SO(2)
with the SL(2, R)⋉ R2 invariant Riemannian metric. In Case 2, the same result
holds. �
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riemannienne en dimension 4 (Séminaire A.Besse) (1981), Cedic, Paris, pp. 40–60.

[2] Calvaruso G., Vanhecke L., Special ball-homogeneous spaces, Z. Anal. Anwendungen 16
(1997), 789–800.

[3] Calvaruso G., Vanhecke L., Ball-homogeneous spaces, Proc. Workshop on Recent Topics
in Differential Geometry, Santiago de Compostela (1997).

[4] Ishihara S., Homogeneous Riemannian spaces of four dimensions, J. Math. Soc. Japan 7
(1955), 345–370.

[5] Jensen G.R., Homogeneous Einstein spaces of dimension four, J. Differential Geom. 3
(1969), 309–349.

[6] Kiyota Y., Singer invariants of Riemannian homogeneous spaces, Master Thesis, Ochano-
mizu University (in Japanese) (1998).

[7] Kowalski O., A note to a theorem by K. Sekigawa, Comment. Math. Univ. Carolinae 30
(1989), 85–88.
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