
Comment.Math.Univ.Carolin. 40,4 (1999)793–797 793

A remark on associative copulas

Piotr Mikusiński, M.D. Taylor

Abstract. Amethod for producing associative copulas from a binary operation and a con-
vex function on an interval is described.
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Let I denote the unit interval [0, 1]. Copulas are cumulative distribution func-
tions on I2 with uniform marginals; more precisely, a copula is a function C(x, y)
on I2 that satisfies

(1) (Boundary Conditions)

C(x, 0) = C(0, y) = 0, C(x, 1) = x and C(1, y) = y for all x, y ∈ I,

and

(2) (Monotonicity)

C(x2, y2)− C(x1, y2)− C(x2, y1) + C(x1, y1) ≥ 0,

if 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1.

For ϕ, a continuous, strictly decreasing function from I to [0,∞] such that

ϕ(1) = 0, we define the pseudo-inverse of ϕ to be the function ϕ[−1] : [0,∞]→ I

defined by

(1) ϕ[−1](x) =

{

ϕ−1(x), if 0 ≤ x ≤ ϕ(0),

0, if ϕ(0) ≤ x ≤ ∞.

We say that C is an Archimedean copula with additive generator ϕ provided that
it is a copula and that there exists a function ϕ of the type described here such
that

(2) C(x, y) = ϕ[−1](ϕ(x) + ϕ(y)).

To quote from [2], “These copulas find a wide range of applications for a number
of reasons: (1) The ease with which they can be constructed; (2) The great variety
of families of copulas which belong to this class; and (3) The many nice properties
possessed by the members of this class.” One of the most salient of these properties
is that C is associative, that is,

C(x,C(y, z)) = C(C(x, y), z).

We have the following characterization of Archimedean copulas:
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Theorem 1. Let ϕ be a continuous, strictly decreasing function from I to [0,∞]
such that ϕ(1) = 0. Then the function C defined by (2) is a copula if and only if
ϕ is convex.

Proof of this theorem can be found in [1] and [2]. Discussion of related
Archimedean binary operations can be found in [3].
We show this theorem can be generalized in a simple and elegant fashion in

which, instead of dealing with pseudo-inverses, we extend the notion of convexity.

Let ⊕ be a continuous associative operation in [0, a], a ∈ [0,∞], such that
t⊕ 0 = 0⊕ t = t and t⊕ a = a⊕ t = a for all t ∈ [0, a].

Example 2. Let a = ∞ and ⊕ by the ordinary addition extended to [0,∞] in
the obvious way. Clearly, the above conditions are satisfied.

Example 3. Let a ∈ [0,∞] be arbitrary and let ⊕ be defined by s⊕t = max(s, t).
Again, it is easy to check that the above conditions are satisfied.

Example 4. Let a ∈ [0,∞] be arbitrary and let ⊕ be defined by s⊕ t = min(s+
t, a). Simple argument shows that the above conditions are satisfied.

A function ψ : [0, a]→ R is called ⊕-convex if

(3) ψ(r ⊕ t)− ψ(r) ≤ ψ(s⊕ t)− ψ(s)

for every r ≤ s and any t.

Lemma 5. If ⊕ is ordinary addition and ψ is continuous, then ψ satisfies (3) if
and only if ψ is convex.

Lemma 6. If s ⊕ t = max(s, t), then ψ satisfies is ⊕-convex if and only if ψ is
decreasing.

Proof: In order to show that (3) implies that ψ is decreasing it suffices to take
t = s.
Now consider r ≤ s. We consider three cases. If t ≤ r, then (3) becomes

ψ(r) − ψ(r) ≤ ψ(s)− ψ(s),

which is always true. If r ≤ t ≤ s, then (3) reduces to

ψ(t)− ψ(r) ≤ ψ(s)− ψ(s) = 0,

which is true since ψ is decreasing. Finally, if s ≤ t, then (3) becomes

ψ(t)− ψ(r) ≤ ψ(t)− ψ(s),

or
ψ(s) ≤ ψ(r),

which is again true since ψ is decreasing. �

Now we prove the main theorem of this note.
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Theorem 7. Let ⊕ be a continuous associative operation in [0, a], a ∈ [0,∞],
such that t⊕0 = 0⊕t = t and t⊕a = a⊕t = a for all t ∈ [0, a]. Let ϕ : [0, 1]→ [0, a]
be a strictly decreasing continuous surjection. Define

(4) C(x, y) = ϕ−1 (ϕ(x)⊕ ϕ(y)) .

Then

(a) C(0, z) = C(z, 0) = 0 and C(1, z) = C(z, 1) = z for all z ∈ [0, 1],
(b) C is associative,
(c) C is a copula if and only if ϕ−1 is ⊕-convex.

Parts (a) and (b) are easy. Before we prove part (c) we prove the following
lemma.

Lemma 8. Let ⊕, ϕ, and C be as in Theorem 7. Then C is monotonic if and
only if

(5) C(u2, v)− C(u1, v) ≤ u2 − u1 whenever u1 ≤ u2.

Proof: Since every copula satisfies (5), it suffices to prove that (5) implies that
C is monotonic.
Assume (5) and consider v1 ≤ v2. Since ϕ and ⊕ are continuous and ϕ(v2) ≤

ϕ(v1), there exists t ∈ [0, 1] such that

ϕ(v2)⊕ ϕ(t) = ϕ(v1).

Hence

C(u2, v1)− C(u1, v1)

= ϕ−1 (ϕ(u2)⊕ ϕ(v1))− ϕ−1 (ϕ(u1)⊕ ϕ(v1))

= ϕ−1 (ϕ(u2)⊕ (ϕ(v2)⊕ ϕ(t))) − ϕ−1 (ϕ(u1)⊕ (ϕ(v2)⊕ ϕ(t)))

= ϕ−1 ((ϕ(u2)⊕ ϕ(v2))⊕ ϕ(t)) − ϕ−1 ((ϕ(u1)⊕ ϕ(v2))⊕ ϕ(t))

= C(C(u2, v2), t)− C(C(u1, v2), t)

≤ C(u2, v2)− C(u1, v2),

which proves that C is monotonic. �

Proof of part (c) in Theorem 7: Suppose C is monotonic. Let r ≤ s and
t > 0. Let u1 = ϕ−1(s), u2 = ϕ−1(r), and v = ϕ−1(t). Since u1 ≤ u2, by
Lemma 8, we have (5) and consequently

ϕ−1(r ⊕ t)− ϕ−1(s⊕ t) ≤ ϕ−1(r)− ϕ−1(s),

which proves that ϕ−1 is ⊕-convex.
Now suppose ϕ−1 is ⊕-convex. Let u1 ≤ u2 and v be arbitrary. Define r =

ϕ(u2), s = ϕ(u1), and t = ϕ(v). Then (3) implies (5), which proves that C is
monotonic by Lemma 8. �

The following simple theorem shows that every associative copula can be ob-
tained in the way described in Theorem 7.
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Theorem 9. For every associative copula C there exist ⊕ and ϕ as in Theorem 7,
with a = 1, such that

C(x, y) = ϕ−1 (ϕ(x)⊕ ϕ(y)) .

Proof: It suffices to define

r ⊕ s = 1− C(1 − r, 1− s)

and
ϕ(t) = 1− t.

�

The copula defined by (2) is commutative, because + is a commutative opera-
tion. Since, in Theorem 7, commutativity plays no role, one may expect that by
using a noncommutative ⊕ we can construct noncommutative associative copulas.
However, this is not possible. In [1] the following theorem is proved.

Theorem 10. Let T : I2 → I be a continuous mapping such that

T (x, 0) = T (0, y) = 0 and T (x, 1) = T (1, x) = x for all x ∈ I,

and
T (T (x, y), z) = T (x, T (y, z)) for all x, y, z ∈ I.

Then
T (x, y) = T (y, x) for all x ∈ I.

From this result we easily obtain the following property of the operation ⊕.

Theorem 11. A continuous associative operation ⊕ in [0, a], a ∈ [0,∞], such
that t⊕ 0 = 0⊕ t = t and t⊕ a = a⊕ t = a for all t ∈ [0, a], is commutative.

Proof: If a <∞, then define

T (x, y) = 1−
1

a
((a− ax)⊕ (a− ay)) .

If a =∞, then define

T (x, y) =
1

1 + 1−x

x
⊕
1−y

y

.

In both cases T satisfies the assumptions of Theorem 10, and thus T (x, y) =
T (y, x) for all x, y ∈ I. Now commutativity of ⊕ follows easily. �

Note that although every decreasing function is ⊕-convex with respect to the
operation ⊕ defined in Example 3, we do not get a variety of copulas this way.
Indeed,

ϕ−1 (max(ϕ(x), ϕ(y))) = min(x, y),

whenever ϕ is decreasing.
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