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A remark on associative copulas

P10TR MIKUSINSKI, M.D. TAYLOR

Abstract. A method for producing associative copulas from a binary operation and a con-
vex function on an interval is described.
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Let I denote the unit interval [0,1]. Copulas are cumulative distribution func-
tions on I? with uniform marginals; more precisely, a copula is a function C (z,9)
on I? that satisfies
(1) (Boundary Conditions)

C(z,0) =C(0,y) =0, C(z,1) =2 and C(l,y) =y forall z,y €I,
and
(2) (Monotonicity)

C(z2,y2) — C(z1,y2) — C(x2,91) + C(z1,91) > 0,
if0<zy <o <land 0<y <yo <L

For ¢, a continuous, strictly decreasing function from I to [0, 0] such that
©(1) = 0, we define the pseudo-inverse of ¢ to be the function ¢l : [0, 00] — I

defined by
-1 if 0<z <0
(1) QD[_”(I) _ { ¥ (x), 1 ST <P( )7
0, if ¢(0) <z < oc.
We say that C' is an Archimedean copula with additive generator ¢ provided that

it is a copula and that there exists a function ¢ of the type described here such
that

(2) Clz,y) = o (@) + ().

To quote from [2], “These copulas find a wide range of applications for a number
of reasons: (1) The ease with which they can be constructed; (2) The great variety
of families of copulas which belong to this class; and (3) The many nice properties
possessed by the members of this class.” One of the most salient of these properties
is that C' is associative, that is,

C(z,Cly, 2)) = C(C(x,y), 2).

We have the following characterization of Archimedean copulas:
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Theorem 1. Let ¢ be a continuous, strictly decreasing function from I to [0, 00|
such that ¢(1) = 0. Then the function C defined by (2) is a copula if and only if
@ is convex.

Proof of this theorem can be found in [1] and [2]. Discussion of related
Archimedean binary operations can be found in [3].

We show this theorem can be generalized in a simple and elegant fashion in
which, instead of dealing with pseudo-inverses, we extend the notion of convexity.

Let @ be a continuous associative operation in [0,a], a € [0,00], such that
t®d0=0@t=tand t®a=adt=aforall ¢t e |0,al

Example 2. Let a = co and & by the ordinary addition extended to [0, o] in
the obvious way. Clearly, the above conditions are satisfied.

Example 3. Let a € [0, 00| be arbitrary and let @ be defined by s®t = max(s, t).
Again, it is easy to check that the above conditions are satisfied.

Example 4. Let a € [0, 00] be arbitrary and let @ be defined by s ® ¢ = min(s +
t,a). Simple argument shows that the above conditions are satisfied.

A function v : [0,a] — R is called &-convez if
3) Y(r&t) —v(r) < Y(s@t) —y(s)
for every r < s and any t.

Lemma 5. If @ is ordinary addition and v is continuous, then 1 satisfies (3) if
and only if 1 is convex.

Lemma 6. If s ®t = max(s,t), then ¢ satisfies is ®-convex if and only if 1 is
decreasing.

PROOF: In order to show that (3) implies that 1 is decreasing it suffices to take
t=s.
Now consider r < s. We consider three cases. If ¢ < r, then (3) becomes

P(r) —(r) < 9(s) —¥(s),
which is always true. If r <t < s, then (3) reduces to
V() —¥(r) < (s) —(s) =0,
which is true since v is decreasing. Finally, if s < ¢, then (3) becomes
U(t) —P(r) < P(t) —b(s),
or
P(s) < (r),

which is again true since 1) is decreasing. (]

Now we prove the main theorem of this note.
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Theorem 7. Let & be a continuous associative operation in [0,a], a € [0, 00],
such that t®0 = 0@t = t and tSa = aPt = a forallt € [0,a]. Let ¢ : [0,1] — [0, a]
be a strictly decreasing continuous surjection. Define

(4) Clay) = ¢~ (@) ® p(y)) .-

Then

(a) C(0,2) =C(2,0) =0 and C(1,2) = C(z,1) = z for all z € [0,1],
(b) C is associative,

(¢) C is a copula if and only if ¢!

is -convex.

Parts (a) and (b) are easy. Before we prove part (c) we prove the following
lemma.

Lemma 8. Let @, ¢, and C be as in Theorem 7. Then C is monotonic if and
only if

(5) C(ug,v) — C(u1,v) <ug —uj whenever uj < us.

PROOF: Since every copula satisfies (5), it suffices to prove that (5) implies that
C' is monotonic.

Assume (5) and consider v; < va. Since ¢ and @ are continuous and p(vy) <
©(v1), there exists t € [0, 1] such that

p(v2) ® p(t) = (v1).
Hence

C(ug,v1) — C(uy,v1)

< C(ug,v2) — C(uz,v2),
which proves that C' is monotonic. ([

PROOF OF PART (c¢) IN THEOREM 7: Suppose C is monotonic. Let r < s and
t > 0. Let uy = ¢ 1(s), ug = ¢ (r), and v = ¢~ (t). Since u; < ug, by
Lemma 8, we have (5) and consequently
plrat) - s@t) <o) — T (),

which proves that ¢! is ®-convex.

Now suppose ¢~ ! is @-convex. Let u; < ug and v be arbitrary. Define r =
o(uz), s = p(u1), and ¢ = p(v). Then (3) implies (5), which proves that C' is
monotonic by Lemma 8. O

The following simple theorem shows that every associative copula can be ob-
tained in the way described in Theorem 7.
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Theorem 9. For every associative copula C' there exist & and ¢ as in Theorem 7,
with a = 1, such that

Clz,y) = ¢ " (p(x) ® @(y)) .
PrOOF: It suffices to define
r@ds=1-C(l—-r1-3s)

and
pt)y=1-t.
O

The copula defined by (2) is commutative, because + is a commutative opera-
tion. Since, in Theorem 7, commutativity plays no role, one may expect that by
using a noncommutative @ we can construct noncommutative associative copulas.
However, this is not possible. In [1] the following theorem is proved.

Theorem 10. Let T : I? — I be a continuous mapping such that
T(x,0)=T(0,y) =0 and T(x,1)=T(1l,z) =z forall z €1,

and
T(T(x,y),2)=T(x,T(y,2)) forall z,y,z¢€ I

Then
T(x,y) =T(y,x) forall z€l.
From this result we easily obtain the following property of the operation &.

Theorem 11. A continuous associative operation @ in [0,a], a € [0, 00|, such
that t@0=0@t=t andt®a=a®t=a for allt € [0,a], is commutative.

ProoOF: If a < oo, then define
1
T(z,y)=1~-~-((a~az)®(a~-ay).
If a = oo, then define
1
T 11—z , 1-y -
1+ Tw D Ty

In both cases T satisfies the assumptions of Theorem 10, and thus T(z,y) =
T(y,x) for all z,y € I. Now commutativity of & follows easily. O

T(l‘,y) =

Note that although every decreasing function is @-convex with respect to the
operation @ defined in Example 3, we do not get a variety of copulas this way.
Indeed,

! (max(p(z), p(y))) = min(z, y),

whenever ¢ is decreasing.



A remark on associative copulas 797

REFERENCES

[1] Alsina C., Frank M.J., Schweizer B., Associative functions on intervals, in preparation.

[2] Nelsen R., An Introduction to Copulas, Springer-Verlag, Berlin-Heidelberg-New York-
London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1997.

[3] Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, New York- Amsterdam-
Oxford, 1983.

MATHEMATICS DEPARTMENT, UNIV. OF CENTRAL FLORIDA, ORLANDO, FL 32816-1364, USA

(Received December 11,1998, revised July 7,1999)



