A remark on associative copulas

PIOTR MIKUSIŃSKI, M.D. TAYLOR

Abstract. A method for producing associative copulas from a binary operation and a convex function on an interval is described.

Keywords: copulas, associative copulas, Archimedean copulas *Classification:* 60E05, 62E10

Let I denote the unit interval [0, 1]. Copulas are cumulative distribution functions on I^2 with uniform marginals; more precisely, a *copula* is a function C(x, y)on I^2 that satisfies

(1) (Boundary Conditions)

 $C(x,0) = C(0,y) = 0, \, C(x,1) = x \ \, \text{and} \ \ C(1,y) = y \ \, \text{for all} \ \ x,y \in I,$ and

(2) (Monotonicity)

$$C(x_2, y_2) - C(x_1, y_2) - C(x_2, y_1) + C(x_1, y_1) \ge 0,$$
 if $0 \le x_1 \le x_2 \le 1$ and $0 \le y_1 \le y_2 \le 1$.

For φ , a continuous, strictly decreasing function from I to $[0,\infty]$ such that $\varphi(1) = 0$, we define the *pseudo-inverse* of φ to be the function $\varphi^{[-1]} : [0,\infty] \to I$ defined by

(1)
$$\varphi^{[-1]}(x) = \begin{cases} \varphi^{-1}(x), & \text{if } 0 \le x \le \varphi(0), \\ 0, & \text{if } \varphi(0) \le x \le \infty \end{cases}$$

We say that C is an Archimedean copula with additive generator φ provided that it is a copula and that there exists a function φ of the type described here such that

(2)
$$C(x,y) = \varphi^{[-1]}(\varphi(x) + \varphi(y)).$$

To quote from [2], "These copulas find a wide range of applications for a number of reasons: (1) The ease with which they can be constructed; (2) The great variety of families of copulas which belong to this class; and (3) The many nice properties possessed by the members of this class." One of the most salient of these properties is that C is associative, that is,

$$C(x, C(y, z)) = C(C(x, y), z).$$

We have the following characterization of Archimedean copulas:

Theorem 1. Let φ be a continuous, strictly decreasing function from I to $[0, \infty]$ such that $\varphi(1) = 0$. Then the function C defined by (2) is a copula if and only if φ is convex.

Proof of this theorem can be found in [1] and [2]. Discussion of related Archimedean binary operations can be found in [3].

We show this theorem can be generalized in a simple and elegant fashion in which, instead of dealing with pseudo-inverses, we extend the notion of convexity.

Let \oplus be a continuous associative operation in [0, a], $a \in [0, \infty]$, such that $t \oplus 0 = 0 \oplus t = t$ and $t \oplus a = a \oplus t = a$ for all $t \in [0, a]$.

Example 2. Let $a = \infty$ and \oplus by the ordinary addition extended to $[0, \infty]$ in the obvious way. Clearly, the above conditions are satisfied.

Example 3. Let $a \in [0, \infty]$ be arbitrary and let \oplus be defined by $s \oplus t = \max(s, t)$. Again, it is easy to check that the above conditions are satisfied.

Example 4. Let $a \in [0, \infty]$ be arbitrary and let \oplus be defined by $s \oplus t = \min(s + t, a)$. Simple argument shows that the above conditions are satisfied.

A function $\psi : [0, a] \to \mathbb{R}$ is called \oplus -convex if

(3)
$$\psi(r \oplus t) - \psi(r) \le \psi(s \oplus t) - \psi(s)$$

for every $r \leq s$ and any t.

Lemma 5. If \oplus is ordinary addition and ψ is continuous, then ψ satisfies (3) if and only if ψ is convex.

Lemma 6. If $s \oplus t = \max(s, t)$, then ψ satisfies is \oplus -convex if and only if ψ is decreasing.

PROOF: In order to show that (3) implies that ψ is decreasing it suffices to take t = s.

Now consider $r \leq s$. We consider three cases. If $t \leq r$, then (3) becomes

$$\psi(r) - \psi(r) \le \psi(s) - \psi(s),$$

which is always true. If $r \leq t \leq s$, then (3) reduces to

$$\psi(t) - \psi(r) \le \psi(s) - \psi(s) = 0,$$

which is true since ψ is decreasing. Finally, if $s \leq t$, then (3) becomes

$$\psi(t) - \psi(r) \le \psi(t) - \psi(s),$$

or

$$\psi(s) \le \psi(r),$$

which is again true since ψ is decreasing.

Now we prove the main theorem of this note.

Theorem 7. Let \oplus be a continuous associative operation in [0, a], $a \in [0, \infty]$, such that $t \oplus 0 = 0 \oplus t = t$ and $t \oplus a = a \oplus t = a$ for all $t \in [0, a]$. Let $\varphi : [0, 1] \to [0, a]$ be a strictly decreasing continuous surjection. Define

(4)
$$C(x,y) = \varphi^{-1} \left(\varphi(x) \oplus \varphi(y) \right)$$

Then

(a) C(0,z) = C(z,0) = 0 and C(1,z) = C(z,1) = z for all $z \in [0,1]$,

(b) C is associative,

(c) C is a copula if and only if φ^{-1} is \oplus -convex.

Parts (a) and (b) are easy. Before we prove part (c) we prove the following lemma.

Lemma 8. Let \oplus , φ , and C be as in Theorem 7. Then C is monotonic if and only if

(5)
$$C(u_2, v) - C(u_1, v) \le u_2 - u_1$$
 whenever $u_1 \le u_2$.

PROOF: Since every copula satisfies (5), it suffices to prove that (5) implies that C is monotonic.

Assume (5) and consider $v_1 \leq v_2$. Since φ and \oplus are continuous and $\varphi(v_2) \leq \varphi(v_1)$, there exists $t \in [0, 1]$ such that

$$\varphi(v_2)\oplus\varphi(t)=\varphi(v_1).$$

Hence

$$C(u_2, v_1) - C(u_1, v_1)$$

$$= \varphi^{-1} (\varphi(u_2) \oplus \varphi(v_1)) - \varphi^{-1} (\varphi(u_1) \oplus \varphi(v_1))$$

$$= \varphi^{-1} (\varphi(u_2) \oplus (\varphi(v_2) \oplus \varphi(t))) - \varphi^{-1} (\varphi(u_1) \oplus (\varphi(v_2) \oplus \varphi(t)))$$

$$= \varphi^{-1} ((\varphi(u_2) \oplus \varphi(v_2)) \oplus \varphi(t)) - \varphi^{-1} ((\varphi(u_1) \oplus \varphi(v_2)) \oplus \varphi(t))$$

$$= C(C(u_2, v_2), t) - C(C(u_1, v_2), t)$$

$$\leq C(u_2, v_2) - C(u_1, v_2),$$

which proves that C is monotonic.

PROOF OF PART (c) IN THEOREM 7: Suppose C is monotonic. Let $r \leq s$ and t > 0. Let $u_1 = \varphi^{-1}(s)$, $u_2 = \varphi^{-1}(r)$, and $v = \varphi^{-1}(t)$. Since $u_1 \leq u_2$, by Lemma 8, we have (5) and consequently

$$\varphi^{-1}(r \oplus t) - \varphi^{-1}(s \oplus t) \le \varphi^{-1}(r) - \varphi^{-1}(s),$$

which proves that φ^{-1} is \oplus -convex.

Now suppose φ^{-1} is \oplus -convex. Let $u_1 \leq u_2$ and v be arbitrary. Define $r = \varphi(u_2)$, $s = \varphi(u_1)$, and $t = \varphi(v)$. Then (3) implies (5), which proves that C is monotonic by Lemma 8.

The following simple theorem shows that every associative copula can be obtained in the way described in Theorem 7.

$$\square$$

Theorem 9. For every associative copula C there exist \oplus and φ as in Theorem 7, with a = 1, such that

$$C(x,y) = \varphi^{-1} \left(\varphi(x) \oplus \varphi(y) \right)$$

PROOF: It suffices to define

$$r \oplus s = 1 - C(1 - r, 1 - s)$$

and

$$\varphi(t) = 1 - t$$

The copula defined by (2) is commutative, because + is a commutative operation. Since, in Theorem 7, commutativity plays no role, one may expect that by using a noncommutative \oplus we can construct noncommutative associative copulas. However, this is not possible. In [1] the following theorem is proved.

Theorem 10. Let $T: I^2 \to I$ be a continuous mapping such that

$$T(x,0) = T(0,y) = 0$$
 and $T(x,1) = T(1,x) = x$ for all $x \in I$,

and

$$T(T(x,y),z) = T(x,T(y,z))$$
 for all $x, y, z \in I$.

Then

$$T(x,y) = T(y,x)$$
 for all $x \in I$.

From this result we easily obtain the following property of the operation \oplus .

Theorem 11. A continuous associative operation \oplus in [0, a], $a \in [0, \infty]$, such that $t \oplus 0 = 0 \oplus t = t$ and $t \oplus a = a \oplus t = a$ for all $t \in [0, a]$, is commutative.

PROOF: If $a < \infty$, then define

$$T(x,y) = 1 - \frac{1}{a} \left((a - ax) \oplus (a - ay) \right).$$

If $a = \infty$, then define

$$T(x,y) = \frac{1}{1 + \frac{1-x}{x} \oplus \frac{1-y}{y}}.$$

In both cases T satisfies the assumptions of Theorem 10, and thus T(x, y) = T(y, x) for all $x, y \in I$. Now commutativity of \oplus follows easily.

Note that although every decreasing function is \oplus -convex with respect to the operation \oplus defined in Example 3, we do not get a variety of copulas this way. Indeed,

$$\varphi^{-1}(\max(\varphi(x),\varphi(y))) = \min(x,y),$$

whenever φ is decreasing.

References

- [1] Alsina C., Frank M.J., Schweizer B., Associative functions on intervals, in preparation.
- [2] Nelsen R., An Introduction to Copulas, Springer-Verlag, Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1997.
- [3] Schweizer B., Sklar A., Probabilistic Metric Spaces, North-Holland, New York-Amsterdam-Oxford, 1983.

MATHEMATICS DEPARTMENT, UNIV. OF CENTRAL FLORIDA, ORLANDO, FL 32816-1364, USA

(Received December 11, 1998, revised July 7, 1999)