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On reductive and distributive algebras

Anna Romanowska

Abstract. The paper investigates idempotent, reductive, and distributive groupoids, and
more generally Ω-algebras of any type including the structure of such groupoids as
reducts. In particular, any such algebra can be built up from algebras with a left zero
groupoid operation. It is also shown that any two varieties of left k-step reductive
Ω-algebras, and of right n-step reductive Ω-algebras, are independent for any positive
integers k and n. This gives a structural description of algebras in the join of these two
varieties.
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Introduction

The paper investigates the structure of algebras generalizing certain idempotent
and distributive groupoids. Such groupoids are algebras (A, ·) with one binary
operation satisfying the idempotent and distributive laws:

x · x = x,(I)

x · (y · z) = (x · y) · (x · z), and (x · y) · z = (x · z) · (y · z).(D)

A systematic study of such groupoids was undertaken by Ježek, Kepka and Němec
[JKN] in 1981. Much more recent notes of Dehornoy [De] show that such groupoids
are really interesting algebras, with a rich theory and many applications. The
groupoids we are interested in here have an additional “reductive” property. Mul-
tiplying an element x by an element y certain number of times, either only on the
left or only on the right, returns the element y.

The idempotent Ω-algebras (A, Ω) we are interested in also have a binary (term)
operation · that makes (A, ·) an idempotent and distributive groupoid. Moreover,
they are distributive, i.e. the operation · distributes both from the left and the
right over each Ω-operation. It is known ([PiR]) that in any such algebra (A, Ω),
the operation · acts as a kind of “partition” operation, and allows a decomposition
of (A, Ω) into a disjoint union of left-reductive subalgebras. On the other hand,
the Mal’cev product of the varieties of left m-step reductive and of left n-step
reductive algebras is contained in the class of m + n-step left reductive algebras.
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A stronger result where these two classes coincide was obtained in [PiR] for the
case of Ω-modes, i.e. idempotent and entropic Ω-algebras, satisfying the identities

(I) x . . . xω = x,

(x11 . . . x1nω) . . . (xm1 . . . xmnω)ω′(E)

= (x11 . . . xm1ω′) . . . (x1n . . . xmnω′)ω

for each n-ary ω and m-ary ω′ in Ω. Note that, in particular, modes are dis-
tributive algebras. In Section 1, we obtain a similar result for idempotent and
distributive algebras in the case n = 2 or n = 3. This, together with results
of [RT], gives a nice structural description of left 3-reductive algebras, and in
particular of left 3-reductive idempotent and distributive groupoids.

The second part of the paper extends some other results of [PiR]. We show
that the varieties of left k-step reductive and of right n-step reductive Ω-algebras
are independent for any positive integers k and n. This result, together with the
previous ones, gives a structural description of algebras in the join of the above
varieties. The presence of entropicity again gives stronger results, and a much
simpler proof of the independence. See [PiR]. The paper concludes with some
comments and questions.

We use notation and terminology similar to that in the book [RS]. In particular,
words (terms) and operations are denoted by x1 . . . xnw instead of w(x1, . . . , xn),
with the exception of traditional binary operations. The symbol x1 . . . xnw means
that x1, . . . , xn are exactly the variables appearing in the word w. For a congru-
ence α of an algebra (A, Ω), the quotient algebra is denoted by (Aα, Ω), and for
a in A, the α-class containing a is denoted by aα.

1. Left and right reductive algebras

Throughout this paper let r : Ω → N be a fixed type of algebras and let x · y

by a fixed Ω-word with precisely two variables x and y. Consider the following
n-step left reductive (or briefly n-reductive) law

(rn) xny := x · (x · (. . . (x · y) . . . )) = x.

In what follows we are interested in idempotent varieties of Ω-algebras satisfying
the identity (rn) for some positive integer n, and additionally the left and right
distributive laws

(ld) x · (x1 . . . xmω) = (x · x1) . . . (x · xm)ω,

(rd) (x1 . . . xmω) · x = (x1 · x) . . . (xm · x)ω

for each (m-ary) ω in Ω. We denote such varieties by Rn and call them (left) n-
reductive varieties. We refer to Rn-algebras as n-reductive algebras. An Ω-algebra
is left reductive if it is n-reductive for some positive integer n.
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An Ω-algebra is called n-step right reductive or briefly right n-reductive if it
satisfies the right n-reductive law

(r′n) yxn := (. . . ((y · x) · x) . . . )x = x

opposite to (rn) and the left and right distributive laws (ld) and (rd). It is called
right reductive if it is right n-reductive for some positive integer n. The right
n-reductive variety is denoted by R′

n. Each fact we formulate for left reductive
algebras may easily be reformulated in the opposite way for right reductive alge-
bras.

Left n-reductive varieties may be easily obtained from idempotent irregular
varieties. Let V be an idempotent irregular variety of Ω-algebras, i.e. a variety
satisfying an identity with different sets of variables on each side. Such a variety is
known to have a basis for its identities consisting of the set Σ of regular identities
true in V and an identity of the form

(i) x · y = x.

(See e.g. [P lR].) In other words, the variety V is strongly irregular ([P lP]), and
as is easily seen, 1-reductive. The set Σ of regular identities true in V defines the

regularization Ṽ of V ([P lR]). Evidently Ṽ contains V , so Ṽ is a supervariety of V .
Other supervarieties of V , interesting for us in this note, are the varieties Rn(V )
defined by the idempotent laws, the distributive laws (ld) and (rd) obviously
true for V , and the n-reduction law (rn). Note that the varieties Rn(V ) are all
contained in the idempotent variety D(V ) of Ω-algebras defined by the identities
(ld) and (rd). Note also that the variety Rn(V ) depends on the term x · y chosen
for the axiomatization of the variety V .

In general, consider for a fixed Ω-word x · y, the idempotent variety V defined
by the above distributive laws (ld) and (rd). Let U and W be subvarieties of V .
Recall that the Mal’cev product U ◦ W of U and W (relative to V ) consists of

V -algebras (A, Ω) with a congruence θ such that (Aθ, Ω) is in W , and each θ-class

(aθ, Ω) is in U . The product U ◦ W is a quasivariety ([M]), but in general it is
not a variety. The rôle of Mal’cev products for n-reductive varieties is explained
by the following.

Theorem 1.1 ([PiR]). Let V be the idempotent variety of Ω-algebras defined by
all the left distributive laws (ld). Let n be a positive integer. Then all k-reductive
subvarieties Rk(V ) of V , for k < n, are related as follows:

Rn−k(V )◦Rk(V ) ⊆ Rn(V ). �

A better result is obtained in the case of mode varieties, i.e. idempotent va-
rieties satisfying the entropic laws. Note that the idempotent and entropic laws
imply all distributive laws (ld) and (rd) for each (derived) binary operation.
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Theorem 1.2 ([PiR]). Let V be the variety of Ω-modes. Let n be a positive

integer. Then all k-reductive subvarieties Rk(V ) of V , for k < n, are related as

follows:

Rn−k(V )◦Rk(V ) = Rn(V ). �

In particular, Theorem 1.2 implies that ◦ is associative and commutative, and

Rn(V ) = (R1(V ))n.

The paper [RT] provides some construction methods for Rn(V )-algebras from
Rn−k(V )-and Rk(V )-algebras.

The proof of Theorem 1.2 (see [PiR]) is based on the following:

Lemma 1.3 ([PRR], [PiR]). For a fixed type r : Ω → Z
+ and an Ω-term x · y,

the following identities are equivalent in the variety of Ω-modes

(i) xny = x,

(ii) x1 · (x2 · . . . (xn−1 ·xn) . . . ) = x1 · (x2 · . . . (xn · y) . . . ) �

Lemma 1.3 remains true for n = 2 and n = 3, if one drops entropicity, and
instead assumes both distributive laws (ld) and (rd). Let D be the idempotent
variety of Ω-algebras satisfying the distributive laws (ld) and (rd).

Lemma 1.4. Let x · y be an Ω-term as above. Then the following two identities
are equivalent in the variety D:

x2y = x,(i)

x · yz = xy.(ii)

Proof: The implication (ii) ⇒ (i) is obvious. We will prove (i) ⇒ (ii). Applying
repeatedly 2-reductive and distributive laws, one gets the following

x · yz = (x2y)(yz)

= (x · yz)(xy · yz)

= (xy · xz)(xy · yz)

= xy · (xz · yz)

= xy · (xy · z)

= xy. �
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Lemma 1.5. For an Ω-term as above, the following two identities are equivalent
in the variety D:

x3y = x,(i)

x(y · zt) = x · yz.(ii)

Proof: The implication (ii) ⇒ (i) is obvious. We will prove (i) ⇒ (ii). First we
show several consequences of the identity (i), if it holds in the variety D:

(a) x(y · xt) = xy · x.

Applying distributivity and (i) one obtains:

x(y · xt) = xy · x2t = x3t · (y · x2t)

= x(y · x2t) = xy · x3t = xy · x.

(b) x2(zt) = x2(zx).

We again use distributivity, (i) and (a) to show the following:

x2(zt) = x22 · x2t = x3t · (xz · x2t)

= x · (xz · x2t) = x(x(z · xt))

= x(xz · x) = x2(zx).

Now (b) obviously implies

x2z = x2(zt).(c)

x(y2t) = xy.(d)

This identity follows by distributivity, and the identities (a) and (c):

x(y2t) = xy · (x · yt) = x2(yt) · y(x · yt)

= x2(yt) · yxy = x2y · yxy

= xy · xy = xy.

Now we are ready to prove that (i) implies (ii):

x(y · zt) = xy · (x · zt)

= x(x · zt) · y(x · zt)

= x2z · y(x · zt) by (c)
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= (x · y(x · zt)) · (xz · y(x · zt)) by (a)

= (xy · x)((xy · x)(z · y(x · zt)))

= (xy · x)((xy · x)z) by (c)

= (xy · x)((xy · z) · xz) = ((xy · x)(xy · z))((xy · x)(xz))

= (xy · xz)(xyx · xz) = (xy · xyx) · xz

= x(y2x · z) = x(y2x) · xz

= xy · xz = x · yz. by (d) �

Lemmata 1.4 and 1.5 make it possible to use the same proof as for Theorem 1.2
in the following situation.

Theorem 1.6. The left reductive subvarieties of the subvariety R3(D) of D are

related as follows:

R2(D) = R1(D) ◦ R1(D),

R3(D) = R1(D) ◦ R2(D) = R2(D) ◦ R1(D)

= R1(D) ◦ (R1(D) ◦ R1(D))

= (R1(D) ◦ R1(D)) ◦ R1(D). �

In particular, if D is the variety IDG of idempotent and distributive groupoids,
i.e. groupoids satisfying the distributive laws

x · yz = xy · xz and xy · z = xz · yz,

then R1(D) = Lz, the variety of left-zero semigroups. In this case one can write:

R2(D) = (Lz)2,

R3(D) = (Lz)3.

In general, we do not know whether the inclusion in Theorem 1.1 can be replaced
with equality as in Theorem 1.2.

In subsequent sections we will be interested in the relation between general left
k-reductive and right n-reductive varieties of Ω-algebras defined for a fixed binary
word x · y.

2. Independent joins of varieties

Let V1 and V2 be varieties of Ω-algebras of the same fixed type. The varieties
V1 and V2 are independent if there is an Ω-word x1x2d with two variables x1

and x2, called a decomposition word, such that the identity x1x2d = xi holds
in Vi for i = 1, 2. It is well known that whenever the varieties V1 and V2 are
independent, each algebra (A, Ω) in their join V = V1 ∨ V2 is isomorphic to
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a product (A1, Ω) × (A2, Ω), with (Ai, Ω) in Vi for i = 1, 2, and the algebras
(Ai, Ω) are determined up to isomorphism. In this case, we denote the join V of
Vi by V1 +V2 and say that V is an independent join of the subvarieties V1 and V2.
(See [GLP]. Note however that V is called a “product” there. “Direct sum” is
another name used for such a join [RS].) As was shown in [Kn], in the case where
the independent varieties V1 and V2 have finite bases for their identities, their join
V1 + V2 is also finitely based. In the case where V1 is a left reductive variety, and
V2 is a right reductive variety, it is very easy to find the basis for V1 + V2.

Proposition 2.1. Let V1 and V2 be varieties of Ω-algebras, the first one being
k-reductive and the second one right n-reductive for a fixed Ω-word x · y. If V1

and V2 are independent, and x1x2d is a corresponding decomposition word, then

the independent join V = V1 + V2 is the idempotent variety of algebras satisfying

all the distributive identities (ld) and (rd), and additionally the following ones:

x11x12dx21x22dd = x11x22d,

(x11 . . . x1mω)(x21 . . . x2mω)d = (x11x21d) . . . (x1mx2md)ω,

(xky)zd = xzd,

x(yzn)d = xzd

for each (m-ary) ω in Ω. �

The proof goes exactly as the proof of Proposition 3.2 in [PRR], where a similar
result is formulated for mode varieties. We will omit it here.

3. On the independence of left and right reductive varieties

In this section, it will be shown that for a fixed Ω-word x · y as in Section 1,
and any positive numbers k and n, the varieties Rk of k-reductive Ω-algebras and
R′

n of right n-reductive Ω-algebras are independent.
For a fixed n, we define a sequence of binary Ω-words as follows.

d1 := xyn,

d2 := xdn
1 = x(xyn)n, . . . ,

dm+1 := xdn
m.

In what follows, D will denote the idempotent supervariety of Rk and R′

n defined
by all the distributive laws (ld) and (rd). We start with a number of lemmas that
will eventually show that the words dk are decomposition words for the varieties
Rk and R′

n.

Lemma 3.1. The variety D satisfies the following identities for each positive m:

xdm+1 = x(xdm)n = (x2dm)(xdm)n−1.
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Proof: By definition

xdm+1 = x(xdn
m)

= x((xdm)dn−1
m )

= (x2dm)(xdm)n−1 (by distributivity)

= x(xdm)n. �

Lemma 3.2. The variety D satisfies the following identity for each m ≥ 2:

xdm =((. . . (((xmd1)(xm−1d1)n−1)((xm−1d1)(xm−2d1)n−1)n−1) . . . )

(. . . ((x3d1)(x2d1)n−1)n−1 . . . )n−1)

((. . . (((xm−1d1)(xm−2d1)n−1)((xm−2d1)(xm−3d1)n−1)n−1) . . . )

(. . . ((x2d1)(xd1)n−1)n−1 . . . )n−1)n−1.

Proof: By induction on m. For m = 2, Lemma 3.1 implies that

xd2 = x(xd1)n = (x2d1)(xd1)n−1.

To make the calculations in the general case more readable, let us calculate xd3,
too:

xd3 = x(xd2)n = (x2d2)(xd2)n−1

= x((x2d1)(xd1)n−1)((x2d1)(xd1)n−1)n−1

= ((x3d1)(x2d1)n−1)((x2d1)(xd1)n−1)n−1,

the first and second equalities following by Lemma 3.1, and the fourth by dis-
tributivity.

To make the notation and calculations easier, we introduce a certain encoding of
the expressions appearing in xdm. For i = 1, . . . , m, we denote by i the expression
xid1, and we replace by j any power n − j. Thus

xmd1 =: m

(xmd1)(xm−1d1)n−1 =: m(m − 1)1.

The word xdm is encoded as

xdm =((. . . ((m(m − 1)1)((m − 1)(m − 2)1)1) . . . )

(. . . (321)1 . . . )1)

((. . . (((m − 1)(m − 2)1)((m − 2)(m − 3)1)1) . . . )

(. . . (211)1 . . . )1)1.
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We will show that if the identity of Lemma 3.2 holds for m, then it also holds
for m + 1. Again, we use Lemma 3.1 and the distributivity. So assume that the
identity holds for m. Then since by distributivity

x(abj) = x(abj−1) · (xb)

= (x(abj−2) · (xb)) · (xb)

= . . .

= (xa)(xb)j ,

it follows that

xdm+1 = (x2dm)(xdm)n−1

= [x · xdm][xdm]n−1

=[((. . . (((m + 1)m1)(m(m − 1)1)1) . . . )

(. . . (431)1 . . . )1)

((. . . ((m(m − 1)1)((m − 1)(m − 2)1)1) . . . )

(. . . (211)1 . . . )1)1]

[((. . . ((m(m − 1)1)((m − 1)(m − 2)1)1) . . . )

(. . . (321)1 . . . )1)

((. . . (((m − 1)(m − 2)1)((m − 2)(m − 3)1)1) . . . )

(. . . (211)1 . . . )1)1]1.

By induction the identity of Lemma 3.2 holds for each m ≥ 2. �

Lemma 3.3. The variety D satisfies the following identity for each positive p:

xpd1 = (xp+1y)(xpy)n−1.

Proof: By induction on p. For p = 1, distributivity implies

xd1 = x(xyn) = x((xy)yn−1)

= (x2y)(xy)n−1.

Suppose now that the identity of 3.3 holds for p. Then distributivity implies

xp+1d1 = x(xpd1) = x[(xp+1y)(xpy)n−1]

= (xp+2y)(xp+1y)n−1.

By induction, the identity of 3.3 holds for all positive p. �
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Lemma 3.4. If aD-algebra (A, Ω) ism+1-reductive, then it satisfies the identity

xdm = x.

Proof: First note that Lemma 3.3 and the m + 1-reductive law imply that

xmd1 = (xm+1y)(xmy)n−1

= x (xmy)n−1

= (x(xmy))(xmy)n−2

= x(xmy)n−2

= . . .

= xm+1y = x.

We introduce the following notation for subwords of xdm:

b1 := m − 1,

b2 := (m − 1)(m − 2)1,

. . .

bi := (. . . ((m − 1)(m − 2)1) . . . )(. . . ((m − (i − 1))(m − i)1)1 . . . )1,

with i − 1 powers 1 at the end, and

a0 := m,

a1 := mb1
1,

a2 := mb1
2,

. . .

ai := mb1
i ,

where i = 1, 2, . . . , m − 1. We will show by finite induction on i that each ai

equals m. We know already that

a0 = m.

Now

mb1 = m(m − 1) = (xmd1)(xm−1d1)

= x(xm−1d1) = xmd1 =: m,

whence

a1 = mb1
1 = m(m − 1)1 = (m(m − 1))(m − 1)2

= m(m − 1)2 = (m(m − 1))(m − 1)3

= m(m − 1)3 = · · · = m(m − 1) = m.



On reductive and distributive algebras 627

Now suppose that all a0, a1, . . . , ai−1 equal m. Then

mbi = m[(. . . (((m − 1)(m − 2)1)((m − 2)(m − 3)1)1) . . . )

(. . . ((m − i + 1)(m − i)1)1 . . . )1]

= (. . . ((m(m − 1)1)((m − 1)(m − 2)1)1) . . . )

(. . . ((m − i + 2)(m − i + 1)1)1) . . . )1

= (. . . (a1((m − 1)(m − 2)1)1) . . . )

(. . . ((m − i + 2)(m − i + 1)1)1 . . . )1

= (. . . ((mb1
2)(((m − 1)(m − 2)1)((m − 2)(m − 3)1)1)1) . . . )

(. . . ((m − i + 2)(m − i + 1)1)1 . . . )1

= (. . . (a2b
1
3) . . . )

(. . . ((m − i + 2)(m − i + 1)1)1 . . . )1

= . . .

= m(. . . ((m − i + 2)(m − i + 1)1)1 . . . )1

= mb1
i−1 = ai−1 = m.

Hence

ai = mb1
i = (mbi)b

2
i = mb2

i

= (mbi)b
3
i = mb3

i = . . .

= mbi = m.

Since a0 = m = xmd1 = x, it follows easily that a0 = a1 = · · · = am−1 = x.
Then Lemma 3.2 and the m + 1-reductive law imply that

xdm = mb1
m−1 = am−1 = mm = x. �

Lemma 3.5. If aD-algebra (A, Ω) ism+1-reductive, then it satisfies the identity

dm+1 = x.

Proof: By Lemma 3.4

dm+1 = xdn
m = (xdm)dn−1

m = xdn−1
m

= (xdm)dn−2
m = xdn−2

m = · · · = xdm = x. �
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Lemma 3.6. If a D-algebra (A, Ω) is right n-reductive, then it satisfies the iden-
tity dm = y for each positive number m.

Proof: By the right n-reductive law

d1 = xyn = y.

Hence

d2 = xdn
1 = xyn = y,

d3 = xdn
2 = xyn = y,

. . . ,

dm = xdn
m−1 = xyn = y. �

Theorem 3.7. For a fixed Ω-word x · y, and any positive numbers k and n, the

varieties Rk of k-reductive Ω-algebras and R′

n of right n-reductive Ω-algebras are
independent.

Proof: Lemmas 3.1–3.6 give the proof. The word dk is the decomposition word.
�

Corollary 3.8. The join of the varieties Rk and R′

n is independent, i.e.

Rk∨R′

n = Rk+R′

n. �

Note that the right-distributive laws (rd) were not used in the proof of Theo-
rem 3.7. However, assuming them allows us to use the dual version of Theorem 1.1
for R′

n-algebras, and thus makes it possible to describe the structure of Rk + R′

n-
algebras.

4. Further comments and questions

If the varieties Rk and R′

n of the previous section are entropic, i.e. they are
varieties of modes, the results of [PiR] show not only that Rk and R′

n are inde-
pendent, but also that

Rk + R′

n = Rk ◦E R′

n = Rk,n.

Here ◦E denotes the Mal’cev product relative to the variety of Ω-modes, and Rk,n

is the variety of Ω-modes defined by the identity

(rk,n) xkyxn = x.

Note that the variety D satisfies the identity

xk(yxn) = (xky)xn.
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Since the variety of Ω-modes is a subvariety of the variety D, one can safely
use notation as in (rn,k). For reductive varieties we obviously have the following
inclusions:

Rk + R′

n ⊆ Rk ◦ R′

n ⊆ Rk,n.

Here the Mal’cev product is taken relative to the variety D, and Rk,n is the
subvariety of D defined by the identity (rk,n). In the case k = n = 1, and D

being the variety IDG of groupoids, it is well known that the following holds:

R1 ◦ R′

1 = R1 ◦E R′

1 = Re = R1,1

= R1 + R′

1 = Lz + Rz,

where Re is the variety of rectangular semigroups and Rz is the variety of right
zero semigroups. (See e.g. [Du]). In general, we do not know if the three classes
Rk + R′

n, Rk ◦R′

n and Rk,n coincide. A positive solution of this problem, and of
that at the end of Section 1, would give a nice characterization of the varieties
Rk,n. Note also that for k and n equal 2 or 3, and D equal IDG, Theorem 1.6
implies that

Rk + R′

n = (Lz)k + (Rz)n.

The structure of groupoids in (Lz)k and in (Rz)n may be described using results
of [RT].
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