P. Kiriakouli

Characterizations of spreading models of l¹

Comment.Math.Univ.Carolinae 41,1 (2000) 79-95.

Abstract: Rosenthal in [11] proved that if (f_k) is a uniformly bounded sequence of real-valued functions which has no pointwise converging subsequence then (f_k) has a subsequence which is equivalent to the unit basis of l^1 in the supremum norm. Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous real-valued functions, which are defined on a compact metric space, by the aid of a countable ordinal index " γ ". In this paper we prove some local analogues of the above Rosenthal 's theorem (spreading models of l^1) for a uniformly bounded and pointwise convergent sequence (f_k) of continuous real-valued functions on a compact metric space for which there exists a countable ordinal ξ such that $\gamma((f_{n_k})) > \omega^{\xi}$ for every strictly increasing sequence (n_k) of natural numbers. Also we obtain a characterization of some subclasses of Baire-1 functions by the aid of spreading models of l^1 .

Keywords: uniformly bounded sequences of continuous real-valued functions, convergence index, spreading models of l^1 , Baire-1 functions

AMS Subject Classification: 46B20, 46E99