

S. García-Ferreira, R.A. González-Silva, A.H. Tomita
Topological games and product spaces

Comment.Math.Univ.Carolinae 43,4 (2002) 675-685.

Abstract: In this paper, we deal with the product of spaces which are either \mathcal{G} -spaces or \mathcal{G}_p -spaces, for some $p \in \omega^*$. These spaces are defined in terms of a two-person infinite game over a topological space. All countably compact spaces are \mathcal{G} -spaces, and every \mathcal{G}_p -space is a \mathcal{G} -space, for every $p \in \omega^*$. We prove that if $\{X_\mu : \mu < \omega_1\}$ is a set of spaces whose product $X = \prod_{\mu < \omega_1} X_\mu$ is a \mathcal{G} -space, then there is $A \in [\omega_1]^{\leq \omega}$ such that X_μ is countably compact for every $\mu \in \omega_1 \setminus A$. As a consequence, X^{ω_1} is a \mathcal{G} -space iff X^{ω_1} is countably compact, and if X^{2^c} is a \mathcal{G} -space, then all powers of X are countably compact. It is easy to prove that the product of a countable family of \mathcal{G}_p spaces is a \mathcal{G}_p -space, for every $p \in \omega^*$. For every $1 \leq n < \omega$, we construct a space X such that X^n is countably compact and X^{n+1} is not a \mathcal{G} -space. If $p, q \in \omega^*$ are *RK*-incomparable, then we construct a \mathcal{G}_p -space X and a \mathcal{G}_q -space Y such that $X \times Y$ is not a \mathcal{G} -space. We give an example of two free ultrafilters p and q on ω such that $p <_{RK} q$, p and q are *RF*-incomparable, $p \approx_C q$ (\leq_C is the *Comfort* order on ω^*) and there are a \mathcal{G}_p -space X and a \mathcal{G}_q -space Y whose product $X \times Y$ is not a \mathcal{G} -space.

Keywords: *RF*-order, *RK*-order, Comfort-order, p -limit, p -compact, \mathcal{G} -space, \mathcal{G}_p -space, countably compact

AMS Subject Classification: Primary 54A35, 03E35; Secondary 54A25