A.R. Aliabad, F. Azarpanah, M. Namdari Rings of continuous functions vanishing at infinity

Comment.Math.Univ.Carolinae 45,3 (2004) 519-533.

Abstract: We prove that a Hausdorff space X is locally compact if and only if its topology coincides with the weak topology induced by $C_{\infty}(X)$. It is shown that for a Hausdorff space X, there exists a locally compact Hausdorff space Y such that $C_{\infty}(X) \cong C_{\infty}(Y)$. It is also shown that for locally compact spaces X and Y, $C_{\infty}(X) \cong C_{\infty}(Y)$ if and only if $X \cong Y$. Prime ideals in $C_{\infty}(X)$ are uniquely represented by a class of prime ideals in $C^*(X)$. ∞ -compact spaces are introduced and it turns out that a locally compact space X is ∞ -compact if and only if every prime ideal in $C_{\infty}(X)$ is fixed. The existence of the smallest ∞ compact space in βX containing a given space X is proved. Finally some relations between topological properties of the space X and algebraic properties of the ring $C_{\infty}(X)$ are investigated. For example we have shown that $C_{\infty}(X)$ is a regular ring if and only if X is an ∞ -compact P_{∞} -space.

Keywords: σ -compact, pseudocompact, ∞ -compact, ∞ -compactification, P_{∞} -space, P-point, regular ring, fixed and free ideals **AMS Subject Classification:** 54C40