Costas Poulios

Regular methods of summability in some locally convex spaces

Comment.Math.Univ.Carolin. 50,3 (2009) 401 -411.

Abstract: Suppose that X is a Fréchet space, $\langle a_{ij} \rangle$ is a regular method of summability and (x_i) is a bounded sequence in X. We prove that there exists a subsequence (y_i) of (x_i) such that: either (a) all the subsequences of (y_i) are summable to a common limit with respect to $\langle a_{ij} \rangle$; or (b) no subsequence of (y_i) is summable with respect to $\langle a_{ij} \rangle$. This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some ω_1 -locally convex spaces are consistent to ZFC.

Keywords: Fréchet space, regular method of summability, summable sequence, Galvin-Prikry theorem, Erdös-Magidor theorem

AMS Subject Classification: Primary 46A04; Secondary 05D10, 46B15

References

- Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24.
- [2] Dunford N., Schwartz J.T., *Linear Operators I: General Theory*, Pure and Applied Mathematics, vol. 7, Interscience, New York, 1958.
- [3] Ellentuck E., A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163-165
- [4] Erdös P., Magidor M., A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232-234.
- [5] Galvin F., Prikry K., Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193-198.
- [6] Kechris A., Classical Descriptive Set Theory, Springer, New York, 1995.
- [7] Plewik S., On completely Ramsey sets, Fund. Math. 127 (1986), 127-132.
- [8] Rudin W., Functional Analysis, McGraw-Hill, New York, 1973.
- [9] Tsarpalias A., A note on the Ramsey property, Proc. Amer. Math. Soc. 127 (1999), 583-587.