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Abstract: Suppose that X is a Fréchet space, (a;;) is a regular method of summability
and (z;) is a bounded sequence in X. We prove that there exists a subsequence (y;) of (z;)
such that: either (a) all the subsequences of (y;) are summable to a common limit with
respect to (aij); or (b) no subsequence of (y;) is summable with respect to {a;;). This
result generalizes the Erdos-Magidor theorem which refers to summability of bounded
sequences in Banach spaces. We also show that two analogous results for some wi-locally
convex spaces are consistent to ZFC.
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