Joshua M. Browning, Petr Vojtěchovský, Ian M. Wanless
 Overlapping latin subsquares and full products

Comment.Math.Univ.Carolin. 51,2 (2010) 175-184.
Abstract: We derive necessary and sufficient conditions for there to exist a latin square of order n containing two subsquares of order a and b that intersect in a subsquare of order c. We also solve the case of two disjoint subsquares. We use these results to show that: (a) A latin square of order n cannot have more than $\frac{n}{m}\binom{n}{h} /\binom{m}{h}$ subsquares of order m, where $h=\lceil(m+1) / 2\rceil$. Indeed, the number of subsquares of order m is bounded by a polynomial of degree at most $\sqrt{2 m}+2$ in n. (b) For all $n \geq 5$ there exists a loop of order n in which every element can be obtained as a product of all n elements in some order and with some bracketing.

Keywords: latin square, latin subsquare, overlapping latin subsquares, full product in loops
AMS Subject Classification: 05B15, 20N05

References

[1] Dénes J., Hermann P., On the product of all elements in a finite group, Ann. Discrete Math. 15 (1982), 105-109.
[2] Heinrich K., Wallis W.D., The maximum number of intercalates in a latin square, Lecture Notes in Math. 884 (1981), 221-233.
[3] McKay B.D., Wanless I.M., Most latin squares have many subsquares, J. Combin. Theory Ser. A 86 (1999), 323-347.
[4] Pula K., Products of all elements in a loop and a framework for non-associative analogues of the Hall-Paige conjecture, Electron. J. Combin. 16 (2009), R57.
[5] Ryser H.J., A combinatorial theorem with an application to latin rectangles, Proc. Amer. Math. Soc. 2 (1951), 550-552.
[6] van Rees G.H.J., Subsquares and transversals in latin squares, Ars Combin. 29B (1990), 193-204.

