R. Roopkumar
Ridgelet transform on tempered distributions

Comment.Math.Univ.Carolin. 51,3 (2010) 431-439.

Abstract:We prove that ridgelet transform $R:\mathscr{S}(\mathbb{R}^2)\to \mathscr{S} (\mathbb{Y})$ and adjoint ridgelet transform $R^\ast:\mathscr{S}(\mathbb{Y}) \to \mathscr{S}(\mathbb{R}^2)$ are continuous, where $\mathbb{Y}=\mathbb{R}^+\times \mathbb{R}\times [0,2\pi]$. We also define the ridgelet transform $\mathcal{R}$ on the space $\mathscr{S}^\prime(\mathbb{R}^2)$ of tempered distributions on $\mathbb{R}^2$, adjoint ridgelet transform $\mathcal{R}^\ast$ on $\mathscr{S}^\prime(\mathbb{Y})$ and establish that they are linear, continuous with respect to the weak$^\ast$-topology, consistent with $R$, $R^\ast$ respectively, and they satisfy the identity $(\mathcal{R}^\ast \circ \mathcal{R})(u) = u$, $u\in \mathscr{S}^\prime(\mathbb{R}^2)$.

Keywords: ridgelet transform, tempered distributions, wavelets
AMS Subject Classification: 44A15 42C40

PDF