David Guerrero Sánchez

Closure-preserving covers in function spaces

Comment.Math.Univ.Carolin. 51,4 (2010) 693 -703.

Abstract: It is shown that if $C_p(X)$ admits a closure-preserving cover by closed σ -compact sets then X is finite. If X is compact and $C_p(X)$ has a closure-preserving cover by separable subspaces then X is metrizable. We also prove that if $C_p(X, [0, 1])$ has a closure-preserving cover by compact sets, then X is discrete.

Keywords: closure-preserving covers, function spaces, compact spaces, pointwise convergence topology, topological game, winning strategy

AMS Subject Classification: 54C35

References

- [1] Arkhangelskii A.V., *Topological function spaces*, Mathematics and its Applications (Soviet Series), **78**, Kluwer Academic Publishers Group, Dordrecht, 1992.
- [2] Junnila H.J.K., Metacompactness, paracompactness, and interior-preserving open covers, Trans. Amer. Math. Soc. 249 (1979), no. 2, 373-385.
- [3] Engelking R., General Topology, Heldermann, Berlin, 1989.
- [4] Potoczny H.B., Closure-preserving families of compact sets, General Topology and Appl. 3 (1973), 243-248.
- [5] Potoczny H.B., Junnila H.J.K., Closure-preserving families and metacompactness, Proc. Amer. Math. Soc. 53 (1975), no. 2, 523-529.
- [6] Rogers C.A., Jayne J.E., K-analytic Sets, Rogers C.A., Jayne J.E. et al., "Analytic Sets", Academic Press, London, 1980, pp. 2-181.
- [7] Shakmatov D.B., Tkachuk V.V., When is the space $C_p(X)$ σ -countably compact?, Vestnik Moskov. Univ. Mat. 41 (1986), no. 1, 73–75.
- [8] Telgársky R., Spaces defined by topological games, Fund. Math. 88 (1975), no. 3, 193–223.
- [9] Tkachuk V.V., The spaces $C_p(X)$: decomposition into a countable union of bounded subspaces and completeness properties, Topology Appl. 22 (1986), no. 3, 241–253.
- [10] Tkachuk V.V., The decomposition of $C_p(X)$ into a countable union of subspaces with "good" properties implies "good" properties of $C_p(X)$, Trans. Moscow Math. Soc. **55** (1994), 239–248