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Abstract: In some recent work, fractal curvatures C,{(F) and fractal curvature measures
C,J:(F7 ), k=0,...,d, have been determined for all self-similar sets F in R?, for which the
parallel neighborhoods satisfy a certain regularity condition and a certain rather technical
curvature bound. The regularity condition is conjectured to be always satisfied, while the
curvature bound has recently been shown to fail in some concrete examples. As a step
towards a better understanding of its meaning, we discuss several equivalent formulations
of the curvature bound condition and also a very natural technically simpler condition
which turns out to be stronger. These reformulations show that the validity of this con-
dition does not depend on the choice of the open set and the constant R appearing in the
condition and allow to discuss some concrete examples of self-similar sets. In particular,
it is shown that the class of sets satisfying the curvature bound condition is strictly larger
than the class of sets satisfying the assumption of polyconvexity used in earlier results.
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