Wolf Iberkleid, Ramiro Lafuente-Rodriguez, Warren Wm. McGovern*
The regular topology on C(X)

Comment.Math.Univ.Carolin. 52,3 (2011) 445 —461.

Abstract: Hewitt [Rings of real-valued continuous functions. I., Trans. Amer. Math.
Soc. 64 (1948), 45-99] defined the m-topology on C(X), denoted Cy,(X), and demon-
strated that certain topological properties of X could be characterized by certain topo-
logical properties of Cy,(X). For example, he showed that X is pseudocompact if and
only if C,,(X) is a metrizable space; in this case the m-topology is precisely the topol-
ogy of uniform convergence. What is interesting with regards to the m-topology is that
it is possible, with the right kind of space X, for C,,(X) to be highly non-metrizable.
E. van Douwen [Nonnormality of spaces of real functions, Topology Appl. 39 (1991), 3-
32] defined the class of DRS-spaces and showed that if X was such a space, then Cp,(X)
satisfied the property that all countable subsets of C,,(X) are closed. In J. Gomez-Perez
and W.Wm. McGovern, The m-topology on Cy,(X) revisited, Topology Appl. 153, (2006),
no. 11, 1838 1848, the authors demonstrated the converse, completing the characteriza-
tion. In this article we define a finer topology on C(X) based on positive regular elements.
It is the authors’ opinion that the new topology is a more well-behaved topology with re-
gards to passing from C(X) to C*(X). In the first section we compute some common
cardinal invariants of the preceding space C,(X). In Section 2, we characterize when
C,(X) satisfies the property that all countable subsets are closed. We call such a space
for which this happens a weak DRS-space and demonstrate that X is a weak DRS-space if
and only if 8X is a weak DRS-space. This is somewhat surprising as a DRS-space cannot
be compact. In the third section we give an internal characterization of separable weak
DRS-spaces and use this to show that a metrizable space is a weak DRS-space precisely
when it is nowhere separable.
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