Abstract:Let $n\geq 2$ and $\Omega\subset \mathbb R^n$ be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space $W_0L^{\Phi}(\Omega)$, where the~Young function $\Phi$ behaves like $t^n\log^{\alpha}(t)$, $\alpha Keywords: Orlicz-Sobolev spaces, Lorentz-Sobolev spaces, Trudinger embedding, Moser-Trudinger inequality, best constants
AMS Subject Classification: 46E35 46E30 26D910