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Abstract: Let I be a semi-prime ideal. Then P◦ ∈ Min(I) is called irredundant with
respect to I if I 6=

⋂
P◦ 6=P∈Min(I) P . If I is the intersection of all irredundant ideals with

respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect
to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique
representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We
say the point p ∈ βX is a fixed-place point if Op(X) is a fixed-place ideal. In this situation
the fixed-place rank of p, denoted by FP-rankX(p), is defined as the cardinal of the set
of all irredundant prime ideals with respect to Op(X). Let p be a fixed-place point, it is
shown that FP-rankX(p) = η if and only if there is a family {Yα}α∈A of cozero sets of X
such that: 1- |A| = η, 2- p ∈ clβX Yα for each α ∈ A, 3- p /∈ clβX(Yα ∩ Yβ) if α 6= β and
4- η is the greatest cardinal with the above properties. In this case p is an F -point with
respect to Yα for any α ∈ A.
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