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Abstract: A planar Eulerian triangulation is a simple plane graph in which each face
is a triangle and each vertex has even degree. Such objects are known to be equivalent
to spherical Latin bitrades. (A Latin bitrade describes the difference between two Latin
squares of the same order.) We give a classification in the near-regular case when each
vertex is of degree 4 or 6 (which we call a near-homogeneous spherical Latin bitrade,
or NHSLB). The classification demonstrates that any NHSLB is equal to two graphs
embedded in hemispheres glued at the equator, where each hemisphere belongs to one of
nine possible types, each of which may be described recursively.
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