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Abstract: Let Z(R) be the set of zero divisor elements of a commutative ring R with
identity and M be the space of minimal prime ideals of R with Zariski topology. An ideal
I of R is called strongly dense ideal or briefly sd-ideal if I ⊆ Z(R) and I is contained in

no minimal prime ideal. We denote by RK(M), the set of all a ∈ R for which D(a) =

M\ V (a) is compact. We show that R has property (A) and M is compact if and only
if R has no sd-ideal. It is proved that RK(M) is an essential ideal (resp., sd-ideal) if
and only if M is an almost locally compact (resp., M is a locally compact non-compact)
space. The intersection of essential minimal prime ideals of a reduced ring R need not be
an essential ideal. We find an equivalent condition for which any (resp., any countable)
intersection of essential minimal prime ideals of a reduced ring R is an essential ideal.
Also it is proved that the intersection of essential minimal prime ideals of C(X) is equal

to the socle of C(X) (i.e., CF (X) = O
βX\I(X)). Finally, we show that a topological space

X is pseudo-discrete if and only if I(X) = XL and CK(X) is a pure ideal.
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