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Abstract: We show: (i) The countable axiom of choice CAC is equivalent to each one of
the statements: (a) a pseudometric space is sequentially compact iff its metric reflection
is sequentially compact, (b) a pseudometric space is complete iff its metric reflection is
complete. (ii) The countable multiple choice axiom CMC is equivalent to the statement:
(a) a pseudometric space is Weierstrass-compact iff its metric reflection is Weierstrass-
compact. (iii) The axiom of choice AC is equivalent to each one of the statements: (a) a
pseudometric space is Alexandroff-Urysohn compact iff its metric reflection is Alexandroff-
Urysohn compact, (b) a pseudometric space X is Alexandroff-Urysohn compact iff its
metric reflection is ultrafilter compact. (iv) We show that the statement “The preimage
of an ultrafilter extends to an ultrafilter” is not a theorem of ZFA.
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