Masami Sakai
Notes on strongly Whyburn spaces

Comment.Math.Univ.Carolin. 57,1 (2016) 123-129.

Abstract:We introduce the notion of a strongly Whyburn space, and show that a space $X$ is strongly Whyburn if and only if $X\times(\omega+1)$ is Whyburn. We also show that if $X\times Y$ is Whyburn for any Whyburn space $Y$, then $X$ is discrete.

Keywords: Whyburn; strongly Whyburn; Fr\'echet-Urysohn

DOI: DOI 10.14712/1213-7243.2015.139
AMS Subject Classification: 54A25 54D55