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Abstract: Let A(X) denote a subalgebra of C(X) which is closed under local bounded in-
version, briefly, an L BI-subalgebra. These subalgebras were first introduced and studied
in Redlin L., Watson S., Structure spaces for rings of continuous functions with appli-
cations to realcompactifications, Fund. Math. 152 (1997), 151-163. By characterizing
maximal ideals of A(X), we generalize the notion of zg-ideals7 which was first introduced
in Acharyya S.K., De D., An interesting class of ideals in subalgebras of C'(X) containing
C*(X), Comment. Math. Univ. Carolin. 48 (2007), 273-280 for intermediate subalge-
bras, to the LBI-subalgebras. Using these, it is simply shown that the structure space
of every LBI-subalgebra is homeomorphic with a quotient of §X. This gives a different
approach to the results of Redlin L., Watson S., Structure spaces for rings of continuous
functions with applications to realcompactifications, Fund. Math. 152 (1997), 151-163
and also shows that the Banaschewski-compactification of a zero-dimensional space X is
a quotient of SX. Finally, we consider the class of complete rings of functions which was
first defined in Byun H.L., Redlin L., Watson S., Local invertibility in subrings of C*(X),
Bull. Austral. Math. Soc. 46(1992), 449-458. Showing that every such subring is an
L BI-subalgebra, we prove that the compactification of X associated to each complete ring
of functions, which is identified in Byun H.L., Redlin L., Watson S., Local invertibility in
subrings of C*(X), Bull. Austral. Math. Soc. 46(1992), 449-458 via the mapping Z4, is
in fact, the structure space of that subring. Henceforth, some statements in Byun H.L.,
Redlin L., Watson S., Local invertibility in subrings of C*(X), Bull. Austral. Math. Soc.
46(1992), 449-458 could be proved in a different way.
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