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Abstract: It is known that every remainder of a topological group is Lindelöf or pseu-
docompact. Motivated by this result, we study in this paper when a topological group
G has a normal remainder. In a previous paper we showed that under mild conditions
on G, the Continuum Hypothesis implies that if the Čech-Stone remainder G

∗ of G is
normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the
case of precompact groups. We show that no pseudocompact group, whose weight is un-
countable but less than c, has a normal remainder under MA+¬CH. We also show that if
a precompact group with a countable network has a normal remainder, then this group is
metrizable. We finally show that if Cp(X) has a normal remainder, then X is countable
(Corollary 4.10) This result provides us with many natural examples of topological groups
all remainders of which are nonnormal.
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[15] Weil A., Sur les Espaces à Structure Uniforme et sur la Topologie Générale, Hermann, Paris,

1937.

1


