Murray R. Bremner, Sara Madariaga, Luiz A. Peresi Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions

Comment.Math.Univ.Carolin. 57,4 (2016) 413-452.

Abstract

This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In $\S 1$, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra $\mathbb{F} S_{n}$ of the symmetric group S_{n} over a field \mathbb{F} of characteristic 0 (or $p>n$). The goal is to obtain a constructive version of the isomorphism $\psi: \bigoplus_{\lambda} M_{d_{\lambda}}(\mathbb{F}) \longrightarrow \mathbb{F} S_{n}$ where λ is a partition of n and d_{λ} counts the standard tableaux of shape λ. Young showed how to compute ψ; to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive methods based on $\S 1$ which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari's algorithm for finite dimensional algebras. In $\S 3$, we study the multilinear identities satisfied by the octonion algebra \mathbb{O} over a field of characteristic 0 . For $n \leq 6$ we compare our computational results with earlier work of Racine, Hentzel \& Peresi, Shestakov \& Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for $n \leq 6$ generate all of the octonion identities in characteristic 0 .

Keywords: symmetric group; group algebra; Young diagrams; standard tableaux; idempotents; matrix units; two-sided ideals; Wedderburn decomposition; representation theory; Clifton's algorithm; computer algebra; polynomial identities; nonassociative algebra; octonions
AMS Subject Classification: Primary 20C30; Secondary 16R10, 16S34, 16Z05, 17-04, 17-08, 17A50, 17A75, 17B01, 17C05, 17D05, 18D50, 20B30, 20B40, 20C40, 68W30

References

[1] Amitsur A., Levitzki J., Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463.
2] Benanti F., Demmel J., Drensky V., Koev P., Computational approach to polynomial identities of matrices - a survey, Polynomial Identities and Combinatorial Methods (Pantelleria, 2001), 141-178, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003.
[3] Bergdolt G., Tilted irreducible representations of the permutation group, Comput. Phys. Comm. 86 (1995), no. 1-2, 97-104.
[4] Boerner H., Representations of Groups. With Special Consideration for the Needs of Modern Physics, (second English edition), North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1970.
[5] Bondari S., Constructing the Identities and the Central Identities of Degree <9 of the $n \times n$ Matrices, Ph.D. Thesis, Iowa State University, 1993. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11403\&context=rtd
[6] Bondari S., Constructing the polynomial identities and central identities of degree <9 of 3×3 matrices, Linear Algebra Appl. 258 (1997), 233-249.
7] Bremner M., Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications, Pure and Applied Mathematics, 300, CRC Press, Boca Raton, 2012.
[8] Bremner M., Dotsenko V., Algebraic Operads: An Algorithmic Companion, Chapman and Hall/CRC, Boca Raton, 2016.
[9] Bremner M., Hentzel I., Identities for the associator in alternative algebras, J. Symbolic Comput. 33 (2002), no. 3, 255-273.
[10] Bremner M., Murakami L., Shestakov I., Nonassociative algebras, Chapter 69 of Handbook of Linear Algebra, edited by Leslie Hogben, Chapman \& Hall/CRC, Boca Raton, 2007.
[11] Bremner M., Peresi L., Nonhomogeneous subalgebras of Lie and special Jordan superalgebras, J. Algebra 322 (2009), no. 6, 2000-2026.
[12] Bremner M., Peresi L., An application of lattice basis reduction to polynomial identities for algebraic structures, Linear Algebra Appl. 430 (2009), no. 2-3, 642-659.
[13] Bremner M., Peresi L., Special identities for quasi-Jordan algebras, Comm. Algebra 39 (2011), no. 7, 2313-2337.
[14] Clifton J., Complete sets of orthogonal tableaux, Ph.D. Thesis, Iowa State University, 1980; http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7688\&context=rtd
[15] Clifton J., A simplification of the computation of the natural representation of the symmetric group S_{n}, Proc. Amer. Math. Soc. 83 (1981), no. 2, 248-250.
[16] Dehn M., Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme, Math. Ann. 85 (1922), no. 1, 184-194.
[17] Filippov V., Kharchenko V., Shestakov I. (editors), Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules, Nonassociative Algebra and its Applications, 461-516, Lect. Notes Pure Appl. Math., 246, Chapman \& Hall/CRC, Boca Raton, 2006; translated by Murray Bremner and Mikhail Kotchetov. http://math.usask.ca/ bremner/research/publications/dniester.pdf
[18] Drensky V., A minimal basis for identities of a second-order matrix algebra over a field of characteristic 0, Algebra Logic 20 (1981), no. 3, 188-194.
[19] Drensky V., Kasparian A., Polynomial identities of eighth degree for 3×3 matrices, Annuaire Univ. Sofia Fac. Math. Méc. 77 (1983), no. 1, 175-195.
[20] Henry F., Some graded identities of the Cayley-Dickson algebra, arxiv.org/abs/1205.5057, (submitted on 22 May 2012).
[21] Hentzel I., Processing identities by group representation, Computers in Nonassociative Rings and Algebras, (Special Session, 82nd Annual Meeting, Amer. Math. Soc., San Antonio, Tex., 1976), pages 13-40, Academic Press, New York, 1977.
[22] Hentzel I., Applying group representation to nonassociative algebras, Ring Theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976), 133-141, Lecture Notes in Pure and Appl. Math., 25, Dekker, New York, 1977.
[23] Hentzel I., Juriaans S., Peresi L., Polynomial identities of RA and RA2 loop algebras, Comm. Algebra 35 (2007), no. 2, 589-595.
[24] Hentzel I., Peresi L., Identities of Cayley-Dickson algebras, J. Algebra 188 (1997), no. 1, 292-309.
[25] Iltyakov A., The Specht property of ideals of identities of certain simple nonassociative algebras, Algebra Logic 24 (1985), no. 3, 210-228.
[26] Iltyakov A., Finiteness of the basis of identities of a finitely generated alternative PI-algebra over a field of characteristic zero, Siberian Math. J. 32 (1991), no. 6, 948-961.
[27] Iltyakov A., On finite basis of identities of Lie algebra representations, Nova J. Algebra Geom. 1 (1992), no. 3, 207-259.
[28] Isaev I., Identities of a finite Cayley-Dickson algebra, Algebra Logic 23 (1984), no. 4, 407418.
[29] Jacobson N., Structure theory for algebraic algebras of bounded degree, Ann. of Math. (2) 46 (1945), 695-707.
[30] Juriaans S., Peresi L., Polynomial identities of RA2 loop algebras, J. Algebra, 213 (1999), no. 2, 557-566.
[31] Kaplansky I., Rings with a polynomial identity, Bull. Amer. Math. Soc. 54 (1948), 575-580.
[32] Kemer A., Finite basability of identities of associative algebras, Algebra Logic 26 (1987), no. 5, 362-397.
[33] Kemer A., Ideals of Identities of Associative Algebras, Translations of Mathematical Monographs, 87, American Mathematical Society, Providence, 1991.
[34] Kleinfeld E., Simple alternative rings, Ann. of Math. 58 (1953), no. 2, 544-547.
[35] Knuth D., The Art of Computer Programming, vol. 3: Sorting and Searching, (second edition), Addison-Wesley, Reading, 1998.
[36] Koshlukov P., Algebras with polynomial identities, 15th School of Algebra, Canela, Brazil, 1998. Mat. Contemp. 16 (1999), 137-186.
[37] Leron U., Multilinear identities of the matrix ring, Trans. Amer. Math. Soc. 183 (1973), 175-202.
[38] Malcev A., On algebras defined by identities, Mat. Sbornik N.S. 26(68) (1950), 19-33.
[39] Novelli J., Pak I., Stoyanovskii A., A direct bijective proof of the hook-length formula, Discrete Math. Theor. Comput. Sci. 1 (1997) no. 1, 53-67.
[40] Racine M., Minimal identities for Jordan algebras of degree 2, Comm. Algebra 13 (1985), no. 12, 2493-2506.
[41] Racine M., Minimal identities of octonion algebras, J. Algebra 115 (1988), no. 1, 251-260.
[42] Razmyslov Y., Identities of Algebras and Their Representations, Translations of Mathematical Monographs, 138, American Mathematical Society, Providence, 1994.
[43] Regev A., The representations of S_{n} and explicit identities for P.I. algebras, J. Algebra 51 (1978), no. 1, 25-40.
[44] Regev A., On the Codimensions of Matrix Algebras, Algebra - Some Current Trends, Varna, 1986, 162-172, Lecture Notes in Math., 1352, Springer, Berlin, 1988.
[45] Rutherford D., Substitutional Analysis, Edinburgh, at the University Press, 1948.
[46] Shestakov I., Associative identities of octonions, Algebra Logic 49 (2011), no. 6, 561-565.
[47] Shestakov I., N. Zhukavets, Skew-symmetric identities of octonions, J. Pure Appl. Algebra 213 (2009), no. 4, 479-492.
[48] Specht W., Gesetze in Ringen I., Math. Z. 52 (1950), 557-589.
[49] Vaĭs A., Zel'manov E., Kemer's theorem for finitely generated Jordan algebras, Soviet Math. (Iz. VUZ) 33 (1989), no. 6, 38-47.
[50] van der Waerden B., Algebra, Vol. II, Based in part on lectures by E. Artin and E. Noether, Springer, New York, 1991.
[51] Wagner W., Uber die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme, Math. Ann. 113 (1937), no. 1, 528-567.
[52] Young A., The Collected Papers of Alfred Young (1873-1940), With a foreword by G. de B. Robinson and a biography by H.W. Turnbull, Mathematical Expositions, 21, University of Toronto Press, Toronto, Ont., Buffalo, N.Y., 1977.
[53] Zhevlakov K., Slin'ko A., Shestakov I., Shirshov A., Rings That Are Nearly Associative, Pure and Applied Mathematics, 104, Academic Press, Inc., New York-London, 1982; translated by Harry F. Smith.

