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Abstract: This is a survey paper on applications of the representation theory of the
symmetric group to the theory of polynomial identities for associative and nonassocia-
tive algebras. In §1, we present a detailed review (with complete proofs) of the classical
structure theory of the group algebra FSn of the symmetric group Sn over a field F of
characteristic 0 (or p > n). The goal is to obtain a constructive version of the isomorphism
ψ :

⊕
λ
Mdλ

(F)−→ FSn where λ is a partition of n and dλ counts the standard tableaux
of shape λ. Young showed how to compute ψ; to compute its inverse, we use an efficient
algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive
methods based on §1 which allow us to analyze the polynomial identities satisfied by a
specific (non)associative algebra: fill and reduce algorithm, module generators algorithm,
Bondari’s algorithm for finite dimensional algebras. In §3, we study the multilinear iden-
tities satisfied by the octonion algebra O over a field of characteristic 0. For n ≤ 6 we
compare our computational results with earlier work of Racine, Hentzel & Peresi, Shes-
takov & Zhukavets. Going one step further, we verify computationally that every identity
in degree 7 is a consequence of known identities of lower degree; this result is our main
original contribution. This gap (no new identities in degree 7) motivates our conclud-
ing conjecture: the known identities for n ≤ 6 generate all of the octonion identities in
characteristic 0.
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