Abstract: This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra \(F S_n \) of the symmetric group \(S_n \) over a field \(F \) of characteristic 0 (or \(p > n \)). The goal is to obtain a constructive version of the isomorphism \(\psi: \bigoplus \lambda M_{d\lambda}(F) \rightarrow FS_n \) where \(\lambda \) is a partition of \(n \) and \(d\lambda \) counts the standard tableaux of shape \(\lambda \). Young showed how to compute \(\psi \); to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton in §2, we discuss constructive methods based on §1 which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari’s algorithm for finite dimensional algebras. In §3, we study the multilinear identities satisfied by the octonion algebra \(\mathbb{O} \) over a field of characteristic 0. For \(n \leq 6 \) we compare our computational results with earlier work of Racine, Hentzel & Peresi, Sheshtakov & Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for \(n \leq 6 \) generate all of the octonion identities in characteristic 0.

Keywords: symmetric group; group algebra; Young diagrams; standard tableaux; idempotents; matrix units; two-sided ideals; Wedderburn decomposition; representation theory; Clifton’s algorithm; computer algebra; polynomial identities; nonassociative algebra; octonions

AMS Subject Classification: Primary 20C30; Secondary 16R10, 16S34, 16Z05, 17-04, 17-08, 17A50, 17A75, 17B01, 17D05, 18D50, 20B30, 20B40, 20C40, 68W30

References

