Wei-feng Xuan, Wei-xue Shi
 Spaces with property $\left(D C\left(\omega_{1}\right)\right)$

Comment.Math.Univ.Carolin. 58,1 (2017) 131-135.
Abstract: We prove that if X is a first countable space with property $\left(D C\left(\omega_{1}\right)\right)$ and with a G_{δ}-diagonal then the cardinality of X is at most \mathfrak{c}. We also show that if X is a first countable, DCCC, normal space then the extent of X is at most \mathfrak{c}.

Keywords: G_{δ}-diagonal; property $\left(D C\left(\omega_{1}\right)\right)$; cardinal; DCCC
AMS Subject Classification: Primary 54D20, 54E35

References

1] Aiken L.P., Star-covering properties: generalized Ψ-spaces, countability conditions, reflection, Topology Appl. 158 (2011), no. 13, 1732-1737.
[2] Arhangel'skii A.V., Buzyakova R.Z., The rank of the diagonal and submetrizability, Comment. Math. Univ. Carolin. 47 (2006), no. 4, 585-597.
[3] Arhangel'skii A.V., Burke D.K., Spaces with a regular G_{δ}-diagonal, Topology Appl. 153 (2006), no. 11, 1917-1929.
[4] Buzyakova R.Z., Cardinalities of ccc-spaces with regular G_{δ}-diagonals, Topology Appl. 153 (2006), no. 11, 1696-1698.
[5] Engelking R., General Topology, Helderman, Berlin, 1989.
[6] Ginsburg J., Woods R.G., A cardinal inequality for topological spaces involving closed discrete sets, Proc. Amer. Math. Soc. 64 (1977), no. 2, 357-360.
[7] Ikenaga S., Topological concept between Lindelöf and pseudo-Lindelöf, Research Reports of Nara National College of Technology 26 (1990), 103-108.
[8] Kunen K., Vaughan J., Handbook of Set-theoretic Topology, North Holland, Amsterdam, 1984.
[9] Matveev M., A survey on star covering properties, Topology Atlas, 1998.
[10] Porter J.R., Woods R.G., Feebly compact spaces, Martin's axiom, and "diamond", Topology Proc. 9 (1984), 105-121.
[11] Shakhmatov D.B., No upper bound for cardinalities of Tychonoff c.c.c. spaces with a $G_{\delta}-$ diagonal exists, Comment. Math. Univ. Carolin. 25 (1984), no. 4, 731-746.
[12] Uspenskij V.V., A large F_{σ}-discrete Fréchet space having the Souslin property, Comment. Math. Univ. Carolin. 25 (1984), no. 2, 257-260.
[13] Xuan W.F., Shi W.X., A note on spaces with a rank 3-diagonal, Bull. Aust. Math. Soc. 90 (2014), no. 3, 521-524.

