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Abstract: We investigate the question whether a system (Ei)i∈I of homogeneous linear

equations over Z is non-trivially solvable in Z provided that each subsystem (Ej)j∈J with

|J | ≤ c is non-trivially solvable in Z where c is a fixed cardinal number such that c < |I |.
Among other results, we establish the following. (a) The answer is ‘No’ in the finite
case (i.e., I being finite). (b) The answer is ‘No’ in the denumerable case (i.e., |I | = ℵ0

and c a natural number). (c) The answer in case that I is uncountable and c ≤ ℵ0

is ‘No relatively consistent with ZF’, but is unknown in ZFC. For the above case, we
show that “every uncountable system of linear homogeneous equations over Z, each of

its countable subsystems having a non-trivial solution in Z, has a non-trivial solution in

Z” implies (1) the Axiom of Countable Choice (2) the Axiom of Choice for families of
non-empty finite sets (3) the Kinna–Wagner selection principle for families of sets each
order isomorphic to Z with the usual ordering, and is not implied by (4) the Boolean
Prime Ideal Theorem (BPI) in ZF (5) the Axiom of Multiple Choice (MC) in ZFA (6) DC<κ

in ZF, for every regular well-ordered cardinal number κ. We also show that the related
statement “every uncountable system of linear homogeneous equations over Z, each of its

countable subsystems having a non-trivial solution in Z, has an uncountable subsystem

with a non-trivial solution in Z” (1) is provable in ZFC (2) is not provable in ZF (3) does
not imply “every uncountable system of linear homogeneous equations over Z, each of its
countable subsystems having a non-trivial solution in Z, has a non-trivial solution in Z”
in ZFA.
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