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Abstract: The paper contains a self-contained alternative proof of my Theorem in Char-

acterization of generic extensions of models of set theory , Fund. Math. 83 (1973), 35–46,
saying that for models M ⊆ N of ZFC with same ordinals, the condition AprM,N(κ)
implies that N is a κ-C.C. generic extension of M .

Keywords: inner model; extension of an inner model; κ-generic extension; κ-C.C. generic
extension; κ-boundedness condition; κ approximation condition; Boolean ultrapower;
Boolean valued model
AMS Subject Classification: Primary 03E45; Secondary 03E40

References

[1] Balcar B., A theorem on supports in the theory of semisets, Comment. Math. Univ. Carolin.
14 (1973), 1–6.
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