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Abstract: Given a subbase S of a space X, the game PO(S ,X) is defined for two players
P and O who respectively pick, at the n-th move, a point xn ∈ X and a set Un ∈ S such
that xn ∈ Un. The game stops after the moves {xn, Un : n ∈ ø} have been made and the
player P wins if

⋃
n∈ø

Un = X; otherwise O is the winner. Since PO(S ,X) is an evident
modification of the well-known point-open game PO(X), the primary line of research is
to describe the relationship between PO(X) and PO(S ,X) for a given subbase S . It
turns out that, for any subbase S , the player P has a winning strategy in PO(S , X) if
and only if he has one in PO(X). However, these games are not equivalent for the player
O: there exists even a discrete space X with a subbase S such that neither P nor O has
a winning strategy in the game PO(S ,X). Given a compact space X, we show that the
games PO(S , X) and PO(X) are equivalent for any subbase S of the space X.
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