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Abstract: Let R be a ring with identity and M be a unitary left R-module. The co-
intersection graph of proper submodules of M , denoted by Ω(M), is an undirected simple
graph whose vertex set V (Ω) is a set of all nontrivial submodules of M and two distinct
vertices N and K are adjacent if and only if N + K 6= M . We study the connectivity, the
core and the clique number of Ω(M). Also, we provide some conditions on the module M ,
under which the clique number of Ω(M) is infinite and Ω(M) is a planar graph. Moreover,
we give several examples for which n the graph Ω(Zn) is connected, bipartite and planar.
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