## Farah H. Al-Hussaini, Aligadzhi R. Rustanov, Habeeb M. Abood

*Vanishing conharmonic tensor of normal locally conformal almost cosymplectic manifold*

Comment.Math.Univ.Carolin. 61,1 (2020) 93-104.**Abstract:**The main purpose of the present paper is to study the geometric properties of the conharmonic curvature tensor of normal locally conformal almost cosymplectic manifolds (normal LCAC-manifold). In particular, three conhoronic invariants are distinguished with regard to the vanishing conharmonic tensor. Subsequentaly, three classes of normal LCAC-manifolds are established. Moreover, it is proved that the manifolds of these classes are $ \eta $-Einstein manifolds of type $ (\alpha,\beta) $. Furthermore, we have determined $ \alpha $ and $ \beta $ for each class.

**Keywords:** normal locally conformal almost cosymplectic manifold; conharmonic curvature tensor; constant curvature; $ \eta $-Einstein manifold

**DOI:** DOI 10.14712/1213-7243.2020.008

**AMS Subject Classification:** 53C55 53B35

PDF